scholarly journals RNA virome diversity and Wolbachia infection in individual Drosophila simulans flies

2021 ◽  
Author(s):  
Ayda Susana Ortiz-Baez ◽  
Mang Shi ◽  
Ary A. Hoffmann ◽  
Edward C Holmes

The endosymbiont bacterium Wolbachia is associated with multiple mutualistic effects on insect biology, including nutritional and antiviral properties. Wolbachia naturally occurs in Drosophila fly species, providing an operational model host to study how virome composition may be impacted by its presence. Drosophila simulans populations can carry a variety of Wolbachia strains. In particular, the wAu strain of Wolbachia has been associated with strong antiviral protection under experimental conditions. We used D. simulans sampled from the Perth Hills, Western Australia, to investigate the potential virus protective effect of the wAu strain on individual wild-caught flies. Our data revealed no appreciable variation in virus composition and abundance between Wolbachia infected/uninfected individuals associated with the presence/absence of wAu. However, it remains unclear whether wAu might impact viral infection and host survival by increasing tolerance rather than inducing complete resistance. These data also provide new insights into the natural virome diversity of D. simulans. Despite the small number of individuals sampled, we identified a repertoire of RNA viruses, including Nora virus, Galbut virus, Chaq virus, Thika virus and La Jolla virus, that have been identified in other Drosophila species. In addition, we identified five novel viruses from the families Reoviridae, Tombusviridae, Mitoviridae and Bunyaviridae. Overall, this study highlights the complex interaction between Wolbachia and RNA virus infections and provides a baseline description of the natural virome of D. simulans.

2021 ◽  
Vol 102 (10) ◽  
Author(s):  
Ayda Susana Ortiz-Baez ◽  
Mang Shi ◽  
Ary A. Hoffmann ◽  
Edward C. Holmes

The endosymbiont bacteria of the genus Wolbachia are associated with multiple mutualistic effects on insect biology, including nutritional and antiviral properties. Members of the genus Wolbachia naturally occur in fly species of the genus Drosophila, providing an operational model host for studying how virome composition may be affected by its presence. Drosophila simulans populations can carry a variety of strains of members of the genus Wolbachia , with the wAu strain associated with strong antiviral protection under experimental conditions. We used D. simulans sampled from the Perth Hills, Western Australia, to investigate the potential virus protective effect of the wAu strain of Wolbachia on individual wild-caught flies. Our data revealed no appreciable variation in virus composition and abundance between individuals infected or uninfected with Wolbachia associated with the presence or absence of wAu. However, it remains unclear whether wAu might affect viral infection and host survival by increasing tolerance rather than inducing complete resistance. These data also provide new insights into the natural virome diversity of D. simulans. Despite the small number of individuals sampled, we identified a repertoire of RNA viruses, including nora virus, galbut virus, thika virus and La Jolla virus, that have been identified in other species of the genus Drosophila. Chaq virus-like sequences associated with galbut virus were also detected. In addition, we identified five novel viruses from the families Reoviridae, Tombusviridae, Mitoviridae and Bunyaviridae. Overall, this study highlights the complex interaction between Wolbachia and RNA virus infections and provides a baseline description of the natural virome of D. simulans.


2009 ◽  
Vol 5 (11) ◽  
pp. e1000658 ◽  
Author(s):  
Celia Perales ◽  
Rubén Agudo ◽  
Hector Tejero ◽  
Susanna C. Manrubia ◽  
Esteban Domingo

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Romina Croci ◽  
Elisabetta Bottaro ◽  
Kitti Wing Ki Chan ◽  
Satoru Watanabe ◽  
Margherita Pezzullo ◽  
...  

RNA virus infections can lead to the onset of severe diseases such as fever with haemorrhage, multiorgan failure, and mortality. The emergence and reemergence of RNA viruses continue to pose a significant public health threat worldwide with particular attention to the increasing incidence of flaviviruses, among others Dengue, West Nile Virus, and Yellow Fever viruses. Development of new and potent antivirals is thus urgently needed. Ivermectin, an already known antihelminthic drug, has shown potent effectsin vitroonFlavivirushelicase, with EC50values in the subnanomolar range for Yellow Fever and submicromolar EC50for Dengue Fever, Japanese encephalitis, and tick-borne encephalitis viruses. However ivermectin is hampered in its application by pharmacokinetic problems (little solubility and high cytotoxicity). To overcome such problems we engineered different compositions of liposomes as ivermectin carriers characterizing and testing them on several cell lines for cytotoxicity. The engineered liposomes were less cytotoxic than ivermectin alone and they showed a significant increase of the antiviral activity in all the Dengue stains tested (1, 2, and S221). In the current study ivermectin is confirmed to be an effective potential antiviral and liposomes, as drug carriers, are shown to modulate the drug activity. All together the results represent a promising starting point for future improvement of ivermectin as antiviral and its delivery.


Author(s):  
Ho Him Wong ◽  
Sumana Sanyal

Autophagy is an evolutionarily conserved central process in host metabolism. Among its major functions are conservation of energy during starvation, recycling organelles, and turnover of long-lived proteins. Besides, autophagy plays a critical role in removing intracellular pathogens and very likely represents a primordial intrinsic cellular defence mechanism. More recent findings indicate that it has not only retained its ability to degrade intracellular pathogens, but also functions to augment and fine tune antiviral immune responses. Interestingly, viruses have also co-evolved strategies to manipulate this pathway and use it to their advantage. Particularly intriguing is infection-dependent activation of autophagy with positive stranded (+)RNA virus infections, which benefit from the pathway without succumbing to lysosomal degradation. In this review we summarise recent data on viral manipulation of autophagy, with a particular emphasis on +RNA viruses and highlight key unanswered questions in the field that we believe merit further attention.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shuangjie Li ◽  
Jie Yang ◽  
Yuanyuan Zhu ◽  
Hui Wang ◽  
Xingyu Ji ◽  
...  

The RLRs play critical roles in sensing and fighting viral infections especially RNA virus infections. Despite the extensive studies on RLRs in humans and mice, there is a lack of systemic investigation of livestock animal RLRs. In this study, we characterized the porcine RLR members RIG-I, MDA5 and LGP2. Compared with their human counterparts, porcine RIG-I and MDA5 exhibited similar signaling activity to distinct dsRNA and viruses, via similar and cooperative recognitions. Porcine LGP2, without signaling activity, was found to positively regulate porcine RIG-I and MDA5 in transfected porcine alveolar macrophages (PAMs), gene knockout PAMs and PK-15 cells. Mechanistically, LGP2 interacts with RIG-I and MDA5 upon cell activation, and promotes the binding of dsRNA ligand by MDA5 as well as RIG-I. Accordingly, porcine LGP2 exerted broad antiviral functions. Intriguingly, we found that porcine LGP2 mutants with defects in ATPase and/or dsRNA binding present constitutive activity which are likely through RIG-I and MDA5. Our work provided significant insights into porcine innate immunity, species specificity and immune biology.


2020 ◽  
Vol 48 (4) ◽  
pp. 2050-2072 ◽  
Author(s):  
Margarita T Angelova ◽  
Dilyana G Dimitrova ◽  
Bruno Da Silva ◽  
Virginie Marchand ◽  
Caroline Jacquier ◽  
...  

Abstract 2′-O-Methylation (Nm) represents one of the most common RNA modifications. Nm affects RNA structure and function with crucial roles in various RNA-mediated processes ranging from RNA silencing, translation, self versus non-self recognition to viral defense mechanisms. Here, we identify two Nm methyltransferases (Nm-MTases) in Drosophila melanogaster (CG7009 and CG5220) as functional orthologs of yeast TRM7 and human FTSJ1. Genetic knockout studies together with MALDI-TOF mass spectrometry and RiboMethSeq mapping revealed that CG7009 is responsible for methylating the wobble position in tRNAPhe, tRNATrp and tRNALeu, while CG5220 methylates position C32 in the same tRNAs and also targets additional tRNAs. CG7009 or CG5220 mutant animals were viable and fertile but exhibited various phenotypes such as lifespan reduction, small RNA pathways dysfunction and increased sensitivity to RNA virus infections. Our results provide the first detailed characterization of two TRM7 family members in Drosophila and uncover a molecular link between enzymes catalyzing Nm at specific tRNAs and small RNA-induced gene silencing pathways.


2012 ◽  
Vol 78 (13) ◽  
pp. 4740-4743 ◽  
Author(s):  
Siu F. Lee ◽  
Vanessa L. White ◽  
Andrew R. Weeks ◽  
Ary A. Hoffmann ◽  
Nancy M. Endersby

ABSTRACTWe have developed and validated two new fluorescence-based PCR assays to detect theWolbachia wMel strain inAedes aegyptiand thewRi andwAu strains inDrosophila simulans. The new assays are accurate, informative, and cost-efficient for large-scaleWolbachiascreening.


Sign in / Sign up

Export Citation Format

Share Document