cellular defence
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 20)

H-INDEX

33
(FIVE YEARS 4)

Open Biology ◽  
2021 ◽  
Vol 11 (12) ◽  
Author(s):  
George Hodgson ◽  
Antonina Andreeva ◽  
Anne Bertolotti

Phosphorylation of the translation initiation factor eIF2α is a rapid and vital cellular defence against many forms of stress. In mammals, the levels of eIF2α phosphorylation are set through the antagonistic action of four protein kinases and two heterodimeric protein phosphatases. The phosphatases are composed of the catalytic subunit PP1 and one of two related non-catalytic subunits, PPP1R15A or PPP1R15B (R15A or R15B). Here, we generated a series of R15 truncation mutants and tested their properties in mammalian cells. We show that substrate recruitment is encoded by an evolutionary conserved region in R15s, R15A 325–554 and R15B 340–639 . G-actin, which has been proposed to confer selectivity to R15 phosphatases, does not bind these regions, indicating that it is not required for substrate binding. Fragments containing the substrate-binding regions but lacking the PP1-binding motif trapped the phospho-substrate and caused accumulation of phosphorylated eIF2α in unstressed cells. Activity assays in cells showed that R15A 325–674 and R15B 340–713 , encompassing the substrate-binding region and the PP1-binding region, exhibit wild-type activity. This work identifies the substrate-binding region in R15s, that functions as a phospho-substrate trapping mutant, thereby defining a key region of R15s for follow up studies.


2021 ◽  
Vol 104 (4) ◽  
pp. 003685042110535
Author(s):  
Keshi Zhang ◽  
Xiaomin Zhang

Introduction: Grasshoppers and locusts are widely distributed worldwide, causing significant losses in agriculture. The origin and functions of their haemocytes are not entirely understood. Objectives: Insect haemocytes arbitrate cellular defence and participate in humoral defences. Due to their importance, the haemocytes of 35 species of grasshoppers and locusts from China were morphologically examined in this study. We aim to highlight a simple method for the morphological examination of insect haemocytes. Methods: The haemocytes were observed, counted and compared under a light microscope after Wright-Giemsa staining. Results: High complexity in form and shape were observed in the haemocytes. These include prohaemocytes, plasmatocytes, granulocytes, vermicytes, podocytes and megakaryocytes. No clear relationship was seen between the haemocyte type and their phylogenetic relationship among the three families examined. The high abundance of plasmatocytes and granulocytes suggests their importance in the immunity of grasshoppers and locusts. The minor haemocyte populations including prohaemocytes, vermicytes and podocytes may not be always present in individuals. Conclusion: All examined species shared similarities in their haemocyte types. Wright-Giemsa staining is a simple and efficient method for evaluating haemocytes.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1358 ◽  
Author(s):  
Suraj Prakash ◽  
Radha ◽  
Manoj Kumar ◽  
Neeraj Kumari ◽  
Mamta Thakur ◽  
...  

Oral cancer continues to be a leading cause of death worldwide, and its prevalence is particularly high in developing countries, where people chew tobacco and betel nut on a regular basis. Radiation-, chemo-, targeted-, immuno-, and hormone-based therapies along with surgery are commonly used as part of a treatment plan. However, these treatments frequently result in various unwanted short- to long-term side effects. As a result, there is an urgent need to develop treatment options for oral cancer that have little or no adverse effects. Numerous bioactive compounds derived from various plants have recently attracted attention as therapeutic options for cancer treatment. Antioxidants found in medicinal plants, such as vitamins E, C, and A, reduce damage to the mucosa by neutralizing free radicals found in various oral mucosal lesions. Phytochemicals found in medicinal plants have the potential to modulate cellular signalling pathways that alter the cellular defence mechanisms to protect normal cells from reactive oxygen species (ROS) and induce apoptosis in cancer cells. This review aims to provide a comprehensive overview of various medicinal plants and phytoconstituents that have shown the potential to be used as oral cancer therapeutics.


2021 ◽  
Vol 22 (17) ◽  
pp. 9157
Author(s):  
Thajasvarie Naicker ◽  
Nalini Govender ◽  
Tashlen Abel ◽  
Nitalia Naidoo ◽  
Merantha Moodley ◽  
...  

Introduction: This review explores angiogenesis, vascular dysfunction, the complement system, RAAS, apoptosis and NETosis as potential pathways that are dysregulated during preeclampsia, HIV infection and ART usage. Results: HIV-1 accessory and matrix proteins are protagonists for the elevation of oxidative stress, apoptosis, angiogenesis, and elevation of adhesion markers. Despite the immunodeficiency during HIV-1 infection, HIV-1 exploits our cellular defence arsenal by escaping cell-mediated lysis, yet HIV-1 infectivity is enhanced via C5a release of TNF-α and IL-6. This review demonstrates that PE is an oxidatively stressed microenvironment associated with increased apoptosis and NETosis, but with a decline in angiogenesis. Immune reconstitution in the duality of HIV-1 and PE by protease inhibitors, HAART and nucleoside reverse transcriptase, affect similar cellular pathways that eventuate in loss of endothelial cell integrity and, hence, its dysfunction. Conclusions: HIV-1 infection, preeclampsia and ARTs differentially affect endothelial cell function. In the synergy of both conditions, endothelial dysfunction predominates. This knowledge will help us to understand the effect of HIV infection and ART on immune reconstitution in preeclampsia.


2021 ◽  
Author(s):  
George Hodgson ◽  
Antonina Andreeva ◽  
Anne Bertolotti

Phosphorylation of the translation initiation factor eIF2α is a rapid and vital cellular defence against many forms of stress. In mammals, the levels of eIF2α phosphorylation are set through the antagonistic action of four protein kinases and two heterodimeric protein phosphatases. The phosphatases are composed of the catalytic subunit PP1 and one of two related non-catalytic subunits, PPP1R15A or PPP1R15B (R15A or R15B). Attempts at reconstituting recombinant holophosphatases have generated two models, one proposing that substrate recruitment requires the addition of actin, whilst the second proposes that this function is encoded by R15s. The biological relevance of actin in substrate recruitment has not been evaluated. Here we generated a series of truncation mutants and tested their properties in mammalian cells. We show that substrate recruitment is encoded by an evolutionary conserved region in R15s, R15A325-554 and R15B340-639. Actin does not bind these regions establishing that it is not required for substrate recruitment. Activity assays in cells showed that R15A325-674 and R15B340-713, encompassing the substrate-binding region and the PP1 binding-region, exhibit wild-type activity. This study identifies essential regions of R15s and demonstrates they function as substrate receptors. This work will guide the design of future structural studies with biological significance.


BioMetals ◽  
2021 ◽  
Author(s):  
Karo Talvio ◽  
Katja M. Kanninen ◽  
Anthony R. White ◽  
Jari Koistinaho ◽  
Maija L. Castrén

AbstractTrace elements have important functions in several processes involved in cellular homeostasis and survival. Dysfunctional metal ion homeostasis can make an important impact on cellular defence mechanisms. We assessed the concentrations of 23 trace minerals in different tissues (brain, spleen, heart and liver) of Fmr1 knockout (KO) mice that display the main phenotype of Fragile X syndrome (FXS), an intellectual disability syndrome and the best-known monogenic model of autism spectrum disorder (ASD). Altogether, seven minerals—Cu, Fe, K, Mg, Mn, Na, and P—were above the detection limit with the analysis revealing increased iron content in the heart of Fmr1 KO mice. In addition, levels of iron were higher in the cerebellum of the transgenic mouse when compared to wild type controls. These results implicate a role for dysregulated iron homeostasis in FXS tissues and suggest that defective iron-related mechanisms contribute to increased tissue vulnerability in FXS.


Author(s):  
Rajamurodov Zaynitdin ◽  
◽  
Jalilov Mukhiddin Khalimovich ◽  
Akhrorov Ma'ruf Nasimjonovich ◽  
◽  
...  

This article provides information on the effect of the immune status of sheep on the humoral and cellular defence systems of sheep raised in extreme conditions, irradiated with low-intensity laser light before arrival. According to the data obtained, it was found that the effect of laser light on a mother-sheep affects its activity on the cellular protective components of the lambs' body.


Author(s):  
Jan Spaas ◽  
Lieve van Veggel ◽  
Melissa Schepers ◽  
Assia Tiane ◽  
Jack van Horssen ◽  
...  

AbstractOligodendrocyte precursor cells (OPCs) account for 5% of the resident parenchymal central nervous system glial cells. OPCs are not only a back-up for the loss of oligodendrocytes that occurs due to brain injury or inflammation-induced demyelination (remyelination) but are also pivotal in plastic processes such as learning and memory (adaptive myelination). OPC differentiation into mature myelinating oligodendrocytes is controlled by a complex transcriptional network and depends on high metabolic and mitochondrial demand. Mounting evidence shows that OPC dysfunction, culminating in the lack of OPC differentiation, mediates the progression of neurodegenerative disorders such as multiple sclerosis, Alzheimer’s disease and Parkinson’s disease. Importantly, neurodegeneration is characterised by oxidative and carbonyl stress, which may primarily affect OPC plasticity due to the high metabolic demand and a limited antioxidant capacity associated with this cell type. The underlying mechanisms of how oxidative/carbonyl stress disrupt OPC differentiation remain enigmatic and a focus of current research efforts. This review proposes a role for oxidative/carbonyl stress in interfering with the transcriptional and metabolic changes required for OPC differentiation. In particular, oligodendrocyte (epi)genetics, cellular defence and repair responses, mitochondrial signalling and respiration, and lipid metabolism represent key mechanisms how oxidative/carbonyl stress may hamper OPC differentiation in neurodegenerative disorders. Understanding how oxidative/carbonyl stress impacts OPC function may pave the way for future OPC-targeted treatment strategies in neurodegenerative disorders.


2021 ◽  
Author(s):  
Paolo Bellavite

Food polyphenols constitute a large family of substances with beneficial properties in a large group of communicable and non-communicable diseases. These compounds support and improve the body’s defences against oxidative stress and are helpful in the prevention of pathologies related to metabolic syndrome. Furthermore, they exhibit anti-inflammatory, antiviral, and antimicrobial properties. This chapter draws attention to certain nutritional components such as hesperidin and quercetin, which are emerging as good candidates for a complementary beneficial effect in the case of diseases caused by viruses, including COVID-19. These nutraceuticals have a complex mechanism of action, which involves both cellular defence against oxidative stress and the modulation of inflammation, which although normally is a defence, repair and activation mechanism of the immune system, it can elude its controls and become a systemic and destructive pathology (cytokine storm, respiratory distress syndrome). Furthermore, recent in silico simulation tests suggest that both hesperidin and quercetin may interfere with SARS-CoV-2 by binding to cell receptors and the proteolytic enzymes involved in its replication. In addition to the inhibitory effects on the virus at cellular level, the two flavonoids can have indirect effects in respiratory infectious diseases as they prevent or improve metabolic and vascular comorbidities that can complicate the clinical course. This brief review focuses on biochemical and pharmacological mechanisms of action of polyphenols in the context of the revaluation of dietary approaches to the prevention and treatment of infectious diseases caused by viruses, with a special application to COVID-19.


2021 ◽  
Vol 42 (3) ◽  
pp. 134
Author(s):  
Emma F Harding ◽  
Grace JH Yan ◽  
Peter A White

Genomic viral integrations, termed endogenous viral elements (EVEs), are fragments of viruses in host chromosomes that provide information about viral evolution and could even help protect the host from infection. In the present study we examined EVEs in thirteen different Australian marsupial species to identify trends in their integration, commonality and to investigate their possible cellular function. We found that marsupial EVEs are commonly derived from viruses of the Bornaviridae, Filoviridae and Parvoviridae families, and circulated up to 160 million years ago. We also show the EVEs are actively transcribed into both long and short RNA molecules in marsupials, and propose they are involved in a cellular defence mechanism to protect the germline from viral genomic invasion.


Sign in / Sign up

Export Citation Format

Share Document