scholarly journals Rat sensitivity to multipoint statistics is predicted by efficient coding of natural scenes

2021 ◽  
Author(s):  
Riccardo Caramellino ◽  
Eugenio Piasini ◽  
Andrea Buccellato ◽  
Anna Carboncino ◽  
Vijay Balasubramanian ◽  
...  

Efficient processing of sensory data requires adapting the neuronal encoding strategy to the statistics of natural stimuli. Humans, for instance, are most sensitive to multipoint correlations that vary the most across natural images. Here we show that rats possess the same sensitivity ranking to multipoint statistics as humans, thus extending a classic demonstration of efficient coding to a species where neuronal and developmental processes can be interrogated and causally manipulated.

2010 ◽  
Vol 22 (7) ◽  
pp. 1812-1836 ◽  
Author(s):  
Laurent U. Perrinet

Neurons in the input layer of primary visual cortex in primates develop edge-like receptive fields. One approach to understanding the emergence of this response is to state that neural activity has to efficiently represent sensory data with respect to the statistics of natural scenes. Furthermore, it is believed that such an efficient coding is achieved using a competition across neurons so as to generate a sparse representation, that is, where a relatively small number of neurons are simultaneously active. Indeed, different models of sparse coding, coupled with Hebbian learning and homeostasis, have been proposed that successfully match the observed emergent response. However, the specific role of homeostasis in learning such sparse representations is still largely unknown. By quantitatively assessing the efficiency of the neural representation during learning, we derive a cooperative homeostasis mechanism that optimally tunes the competition between neurons within the sparse coding algorithm. We apply this homeostasis while learning small patches taken from natural images and compare its efficiency with state-of-the-art algorithms. Results show that while different sparse coding algorithms give similar coding results, the homeostasis provides an optimal balance for the representation of natural images within the population of neurons. Competition in sparse coding is optimized when it is fair. By contributing to optimizing statistical competition across neurons, homeostasis is crucial in providing a more efficient solution to the emergence of independent components.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Riccardo Caramellino ◽  
Eugenio Piasini ◽  
Andrea Buccellato ◽  
Anna Carboncino ◽  
Vijay Balasubramanian ◽  
...  

Efficient processing of sensory data requires adapting the neuronal encoding strategy to the statistics of natural stimuli. Previously, in Hermundstad et al., 2014, we showed that local multipoint correlation patterns that are most variable in natural images are also the most perceptually salient for human observers, in a way that is compatible with the efficient coding principle. Understanding the neuronal mechanisms underlying such adaptation to image statistics will require performing invasive experiments that are impossible in humans. Therefore, it is important to understand whether a similar phenomenon can be detected in animal species that allow for powerful experimental manipulations, such as rodents. Here we selected four image statistics (from single- to four-point correlations) and trained four groups of rats to discriminate between white noise patterns and binary textures containing variable intensity levels of one of such statistics. We interpreted the resulting psychometric data with an ideal observer model, finding a sharp decrease in sensitivity from two- to four-point correlations and a further decrease from four- to three-point. This ranking fully reproduces the trend we previously observed in humans, thus extending a direct demonstration of efficient coding to a species where neuronal and developmental processes can be interrogated and causally manipulated.


2021 ◽  
Vol 15 ◽  
Author(s):  
Olivier Penacchio ◽  
Sarah M. Haigh ◽  
Xortia Ross ◽  
Rebecca Ferguson ◽  
Arnold J. Wilkins

Visual discomfort is related to the statistical regularity of visual images. The contribution of luminance contrast to visual discomfort is well understood and can be framed in terms of a theory of efficient coding of natural stimuli, and linked to metabolic demand. While color is important in our interaction with nature, the effect of color on visual discomfort has received less attention. In this study, we build on the established association between visual discomfort and differences in chromaticity across space. We average the local differences in chromaticity in an image and show that this average is a good predictor of visual discomfort from the image. It accounts for part of the variance left unexplained by variations in luminance. We show that the local chromaticity difference in uncomfortable stimuli is high compared to that typical in natural scenes, except in particular infrequent conditions such as the arrangement of colorful fruits against foliage. Overall, our study discloses a new link between visual ecology and discomfort whereby discomfort arises when adaptive perceptual mechanisms are overstimulated by specific classes of stimuli rarely found in nature.


Perception ◽  
1996 ◽  
Vol 25 (1_suppl) ◽  
pp. 85-85
Author(s):  
G M Kennedy ◽  
D J Tolhurst

Previous studies with simplified stimuli such as combinations of sinusoidal gratings have revealed phase identification losses in the periphery that are not eliminated by a scaling factor. How do these phase processing problems influence our ability to discriminate natural images in the periphery? In this study the ability of an observer to identify the ‘odd-image-out’ when there is either an amplitude-only, phase-only, or amplitude and phase change in one out of three stimuli is compared. Pairs of Fourier-manipulated black-and-white digitised photographs of natural images were used and phase and amplitude spectral exchanges of varying proportions were made between two different images. Measurements were made to determine the smallest phase change needed in order for the observer to reliably discriminate the manipulated image, compared to two reference stimuli, at eccentricities of 0°, 2.5°, 5°, and 10°. This was compared to discrimination thresholds found when amplitude and phase, and amplitude alone were exchanged. The ability to discriminate images on the basis of phase information alone did fall off quickly with eccentricity (comparable to phase and amplitude discriminations). However, there was a much more rapid decline in amplitude-only discrimination. It appears that phase information in natural scenes remains a relatively more important visual cue in the periphery than amplitude.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Seha Kim ◽  
Johannes Burge

Estimating local surface orientation (slant and tilt) is fundamental to recovering the three-dimensional structure of the environment. It is unknown how well humans perform this task in natural scenes. Here, with a database of natural stereo-images having groundtruth surface orientation at each pixel, we find dramatic differences in human tilt estimation with natural and artificial stimuli. Estimates are precise and unbiased with artificial stimuli and imprecise and strongly biased with natural stimuli. An image-computable Bayes optimal model grounded in natural scene statistics predicts human bias, precision, and trial-by-trial errors without fitting parameters to the human data. The similarities between human and model performance suggest that the complex human performance patterns with natural stimuli are lawful, and that human visual systems have internalized local image and scene statistics to optimally infer the three-dimensional structure of the environment. These results generalize our understanding of vision from the lab to the real world.


2018 ◽  
Author(s):  
Yueyang Xu ◽  
Ashish Raj ◽  
Jonathan Victor ◽  

AbstractAn important heuristic in developing image processing technologies is to mimic the computational strategies used by humans. Relevant to this, recent studies have shown that the human brain’s processing strategy is closely matched to the characteristics of natural scenes, both in terms of global and local image statistics. However, structural MRI images and natural scenes have fundamental differences: the former are two-dimensional sections through a volume, the latter are projections. MRI image formation is also radically different from natural image formation, involving acquisition in Fourier space, followed by several filtering and processing steps that all have the potential to alter image statistics. As a consequence, aspects of the human visual system that are finely-tuned to processing natural scenes may not be equally well-suited for MRI images, and identification of the differences between MRI images and natural scenes may lead to improved machine analysis of MRI.With these considerations in mind, we analyzed spectra and local image statistics of MRI images in several databases including T1 and FLAIR sequence types and of simulated MRI images,[1]–[6] and compared this analysis to a parallel analysis of natural images[7] and visual sensitivity[7][8]. We found substantial differences between the statistical features of MRI images and natural images. Power spectra of MRI images had a steeper slope than that of natural images, indicating a lack of scale invariance. Independent of this, local image statistics of MRI and natural images differed: compared to natural images, MRI images had smaller variations in their local two-point statistics and larger variations in their local three-point statistics – to which the human visual system is relatively insensitive. Our findings were consistent across MRI databases and simulated MRI images, suggesting that they result from brain geometry at the scale of MRI resolution, rather than characteristics of specific imaging and reconstruction methods.


2017 ◽  
Author(s):  
Seha Kim ◽  
Johannes Burge

AbstractEstimating local surface orientation (slant and tilt) is fundamental to recovering the three-dimensional structure of the environment, but it is unknown how well humans perform this task in natural scenes. Here, with a high-fidelity database of natural stereo-images with groundtruth surface orientation at each pixel, we find dramatic differences in human tilt estimation with natural and artificial stimuli. With artificial stimuli, estimates are precise and unbiased. With natural stimuli, estimates are imprecise and strongly biased. An image-computable normative model grounded in natural scene statistics predicts human bias, precision, and trial-by-trial errors without fitting parameters to the human data. These similarities suggest that the complex human performance patterns with natural stimuli are lawful, and that human visual systems have internalized local image and scene statistics to optimally infer the three-dimensional structure of the environment. The current results help generalize our understanding of human vision from the lab to the real world.


Sign in / Sign up

Export Citation Format

Share Document