scholarly journals Maternal hyperglycemia impedes second heart field-derived cardiomyocyte differentiation to elevate the risk of congenital heart defects

2021 ◽  
Author(s):  
Sathiyanarayanan Manivannan ◽  
Corrin Mansfield ◽  
Xinmin Zhang ◽  
Karthik M. Kodigepalli ◽  
Uddalak Majumdar ◽  
...  

Congenital heart disease (CHD) is the most frequently occurring structural malformations of the heart affecting ~1% of live births. Besides genetic predisposition, embryonic exposure to teratogens during pregnancy increases the risk of CHD. However, the dose and cell-type-specific responses to an adverse maternal environment remain poorly defined. Here, we report a dose-response relationship between maternal glucose levels and phenotypic severity of CHD in offspring, using a chemically-induced pregestational diabetes mellitus (PGDM) mouse model. Embryos from dams with low-level maternal hyperglycemia (matHG) displayed trabeculation defects, ventricular wall thinning, and ventricular septal defects (VSD). On the other hand, embryos from dams with high-level matHG display outflow tract malformations, ventricular wall thinning and an increased rate of VSD. Our findings show that increasing levels of matHG exacerbates CHD occurrence and severity in offspring compared to control embryos. We applied single-cell RNA- sequencing to define matHG-related transcriptional differences in E9.5 and E11.5 hearts as comparing to controls. Disease-dependent gene-expression changes were observed in Isl1+ second heart field (SHF) and Tnnt2+ cardiomyocyte subpopulations. Lineage tracing studies in Isl1-Cre; RosamTmG embryonic hearts showed Isl1+-SHF-derived cardiomyocyte differentiation was impaired with matHG. This study highlights the influence of matHG-dosage on cardiac morphogenesis and identifies perturbations in the Isl1-dependent gene-regulatory network that affect SHF-derived cardiomyocyte differentiation contributing to matPGDM-induced CHD.

ESC CardioMed ◽  
2018 ◽  
pp. 33-36
Author(s):  
Robert G. Kelly

The embryonic heart forms in anterior lateral splanchnic mesoderm and is derived from Mesp1-expressing progenitor cells. During embryonic folding, the earliest differentiating progenitor cells form the linear heart tube in the ventral midline. The heart tube extends in length and loops to the right as new myocardium is progressively added at the venous and arterial poles from multipotent second heart field cardiovascular progenitor cells in contiguous pharyngeal mesoderm. While the linear heart tube gives rise to the left ventricle, the right ventricle, outflow tract, and a large part of atrial myocardium are derived from the second heart field. Progressive myocardial differentiation is controlled by intercellular signals within the progenitor cell niche. The embryonic heart is the template for septation and growth of the four-chambered definitive heart and defects in progenitor cell deployment result in a spectrum of common forms of congenital heart defects.


ESC CardioMed ◽  
2018 ◽  
pp. 33-36
Author(s):  
Robert G. Kelly

The embryonic heart forms in anterior lateral splanchnic mesoderm and is derived from Mesp1-expressing progenitor cells. During embryonic folding, the earliest differentiating progenitor cells form the linear heart tube in the ventral midline. The heart tube extends in length and loops to the right as new myocardium is progressively added at the venous and arterial poles from multipotent second heart field cardiovascular progenitor cells in contiguous pharyngeal mesoderm. While the linear heart tube gives rise to the left ventricle, the right ventricle, outflow tract, and a large part of atrial myocardium are derived from the second heart field. Progressive myocardial differentiation is controlled by intercellular signals within the progenitor cell niche. The embryonic heart is the template for septation and growth of the four-chambered definitive heart and defects in progenitor cell deployment result in a spectrum of common forms of congenital heart defects.


2021 ◽  
Author(s):  
Matthew Miyamoto ◽  
Suraj Kannan ◽  
Hideki Uosaki ◽  
Tejasvi Kakani ◽  
Sean Murphy ◽  
...  

Proper heart formation requires coordinated development of two anatomically distinct groups of cells - the first and second heart fields (FHF and SHF). Given that congenital heart defects are often restricted to derivatives of the FHF or SHF, it is crucial to understand the mechanisms controlling their development. Wnt signaling has previously been implicated in SHF proliferation; however, the source of Wnts remains unknown. Through comparative gene analysis, we found upregulation of Wnts and Wnt receptor/target genes in the FHF and SHF, respectively, raising the possibility that early cardiac progenitors may secrete Wnts to influence SHF cell fate. To probe this further, we deleted Wntless (Wls), a gene required for Wnt ligand secretion, in various populations of precardiac cells. Deletion of Wls in Mesp1+ cells resulted in formation of a single chamber heart with left ventricle identity, implying compromised SHF development. This phenotype was recapitulated by deleting Wls in cells expressing Islet1, a pan-cardiac marker. Similarly, Wls deletion in cells expressing Nkx2.5, a later-expressed pan-cardiac marker, resulted in hypoplastic right ventricle, a structure derived from the SHF. However, no developmental defects were observed when deleting Wls in SHF progenitors. To gain mechanistic insights, we isolated Mesp1-lineage cells from developing embryos and performed single-cell RNA-sequencing. Our comprehensive single cell transcriptome analysis revealed that Wls deletion dysregulates developmental trajectories of both anterior and posterior SHF cells, marked by impaired proliferation and premature differentiation. Together, these results demonstrate a critical role of local precardiac mesodermal Wnts in SHF fate decision, providing fundamental insights into understanding heart field development and chamber formation.Significance StatementThere is significant interest in understanding the mechanisms underlying heart formation to develop treatments and cures for patients suffering from congenital heart disease. In particular, we were interested in the intricacies of first (FHF) and second heart field (SHF) development, as many congenital heart defects present with heart field-specific etiologies. Here, we uncovered a novel relationship between specified cardiac progenitor cells and second heart field progenitors. Through genetic manipulation of Wnt secretion in developing mouse embryos, we identified a population of cardiac progenitor cells that acts as a local source of Wnts which are necessary for proper SHF development. Our single cell transcriptomic analysis of developing anterior mesoderm showed cardiac progenitor-secreted Wnts function through regulation of differentiation and proliferation among SHF progenitors. Thus, this study provides insight into the source and timing of Wnts required for SHF development, and points to the crucial role of co-developing cell populations in heart development.


2021 ◽  
Vol 8 (4) ◽  
pp. 42
Author(s):  
Sonia Stefanovic ◽  
Heather C. Etchevers ◽  
Stéphane Zaffran

Anomalies in the cardiac outflow tract (OFT) are among the most frequent congenital heart defects (CHDs). During embryogenesis, the cardiac OFT is a dynamic structure at the arterial pole of the heart. Heart tube elongation occurs by addition of cells from pharyngeal, splanchnic mesoderm to both ends. These progenitor cells, termed the second heart field (SHF), were first identified twenty years ago as essential to the growth of the forming heart tube and major contributors to the OFT. Perturbation of SHF development results in common forms of CHDs, including anomalies of the great arteries. OFT development also depends on paracrine interactions between multiple cell types, including myocardial, endocardial and neural crest lineages. In this publication, dedicated to Professor Andriana Gittenberger-De Groot and her contributions to the field of cardiac development and CHDs, we review some of her pioneering studies of OFT development with particular interest in the diverse origins of the many cell types that contribute to the OFT. We also discuss the clinical implications of selected key findings for our understanding of the etiology of CHDs and particularly OFT malformations.


2021 ◽  
Author(s):  
Francisco Xavier Galdos ◽  
Carissa Lee ◽  
Soah Lee ◽  
William Goodyer ◽  
Sharon Paige ◽  
...  

Rationale: Patient-derived induced pluripotent stem cells (iPSCs) present an exciting avenue for the modeling congenital heart disease. While hiPSC cardiac differentiations generate various cell types, the presence of mixed cell populations can confound interpretation of study results, particularly in the case of modeling structural congenital heart defects where lesions affect specific chambers of the heart. During cardiac development, the left and the right ventricles arise from distinct cardiac progenitor populations known as the first and second heart fields, respectively. Currently, availability of a lineage tracing tool to identify the descendants of these progenitors in the human iPSC system is lacking and such a tool would allow for the identification of left and right ventricular cardiomyocytes for modeling of chamber specific congenital heart defects in vitro. Objectives: Genetically engineer a heart field-specific lineage tracing and a ventricular specific genetic reporter system in human iPSCs to identify left and right ventricular cardiomyocytes in vitro. Methods and Results: We gene targeted a TBX5-based Cre-LoxP lineage tracing system via CRISPR/Cas9 genome editing into an hiPSC line from a healthy male patient. We also replaced the stop codon of the ventricular-specific Myosin Light Chain-2 (MYL2) gene with a P2A-TdTomato construct to allow for the identification of ventricular cardiomyocytes through the course of differentiation. Using a standard small molecular biphasic WNT modulation protocol, we conducted multiple independent differentiations and analyzed by FACS the percentage of lineage positive and troponin-T (TNNT2+) positive cardiomyocytes at multiple timepoints during differentiation. Analysis of GFP+ (TBX5-lineage+) cells out of TNNT2+ cells identified a gradual increase in GFP expression beginning at day 11 of differentiation and results in nearly 100% of TNNT2+ cardiomyocytes exhibiting GFP expression. GFP+ expression among MYL2-Tomato+ cells confirmed the predominance of TBX5-lineage+ ventricular cardiomyocytes. Analysis of gene expression across differentiation confirmed the predominance of LV marker genes and the absence or downregulation of SHF and RV markers. Conclusions: Here, we genetically engineered a triple-targeted dual-fluorescent hiPSC reporter line that allows for the identification of TBX5-lineage positive ventricular cardiomyocytes. Gene expression analysis confirms the predominance of a left ventricular phenotype consistent with the fluorescence reporter expression. In summary, we provide a powerful tool for identifying and isolating chamber-specific left ventricular cardiomyocytes.


2021 ◽  
Vol 8 (2) ◽  
pp. 17
Author(s):  
Cassie L. Kemmler ◽  
Fréderike W. Riemslagh ◽  
Hannah R. Moran ◽  
Christian Mosimann

The heart is the first functional organ to form during vertebrate development. Congenital heart defects are the most common type of human birth defect, many originating as anomalies in early heart development. The zebrafish model provides an accessible vertebrate system to study early heart morphogenesis and to gain new insights into the mechanisms of congenital disease. Although composed of only two chambers compared with the four-chambered mammalian heart, the zebrafish heart integrates the core processes and cellular lineages central to cardiac development across vertebrates. The rapid, translucent development of zebrafish is amenable to in vivo imaging and genetic lineage tracing techniques, providing versatile tools to study heart field migration and myocardial progenitor addition and differentiation. Combining transgenic reporters with rapid genome engineering via CRISPR-Cas9 allows for functional testing of candidate genes associated with congenital heart defects and the discovery of molecular causes leading to observed phenotypes. Here, we summarize key insights gained through zebrafish studies into the early patterning of uncommitted lateral plate mesoderm into cardiac progenitors and their regulation. We review the central genetic mechanisms, available tools, and approaches for modeling congenital heart anomalies in the zebrafish as a representative vertebrate model.


2018 ◽  
Author(s):  
Megan Rowton ◽  
Carlos Perez-Cervantes ◽  
Ariel Rydeen ◽  
Suzy Hur ◽  
Jessica Jacobs-Li ◽  
...  

SUMMARYHeterochrony, defined as differences in the timing of developmental processes, impacts organ development, homeostasis, and regeneration. The molecular basis of heterochrony in mammalian tissues is poorly understood. We report that Hedgehog signaling activates a heterochronic pathway that controls differentiation timing in multiple lineages. A differentiation trajectory from second heart field cardiac progenitors to first heart field cardiomyocytes was identified by single-cell transcriptional profiling in mouse embryos. A survey of developmental signaling pathways revealed specific enrichment for Hedgehog signaling targets in cardiac progenitors. Removal of Hh signaling caused loss of progenitor and precocious cardiomyocyte differentiation gene expression in the second heart field in vivo. Introduction of active Hh signaling to mESC-derived progenitors, modelled by transient expression of the Hh-dependent transcription factor GLI1, delayed differentiation in cardiac and neural lineages in vitro. A shared GLI1-dependent network in both cardiac and neural progenitors was enriched with FOX family transcription factors. FOXF1, a GLI1 target, was sufficient to delay onset of the cardiomyocyte differentiation program in progenitors, by epigenetic repression of cardiomyocyte-specific enhancers. Removal of active Hh signaling or Foxf1 expression from second heart field progenitors caused precocious cardiac differentiation in vivo, establishing a mechanism for resultant Congenital Heart Disease. Together, these studies suggest that Hedgehog signaling directly activates a gene regulatory network that functions as a heterochronic switch to control differentiation timing across developmental lineages.


Sign in / Sign up

Export Citation Format

Share Document