scholarly journals Classification of Fetal State through the application of Machine Learning techniques on Cardiotocography records: Towards Real World Application.

Author(s):  
Andrew M V Dadario ◽  
Christian Espinoza ◽  
Wellington Araujo Nogueira

Objective Anticipating fetal risk is a major factor in reducing child and maternal mortality and suffering. In this context cardiotocography (CTG) is a low cost, well established procedure that has been around for decades, despite lacking consensus regarding its impact on outcomes. Machine learning emerged as an option for automatic classification of CTG records, as previous studies showed expert level results, but often came at the price of reduced generalization potential. With that in mind, the present study sought to improve statistical rigor of evaluation towards real world application. Materials and Methods In this study, a dataset of 2126 CTG recordings labeled as normal, suspect or pathological by the consensus of three expert obstetricians was used to create a baseline random forest model. This was followed by creating a lightgbm model tuned using gaussian process regression and post processed using cross validation ensembling. Performance was assessed using the area under the precision-recall curve (AUPRC) metric over 100 experiment executions, each using a testing set comprised of 30% of data stratified by the class label. Results The best model was a cross validation ensemble of lightgbm models that yielded 95.82% AUPRC. Conclusions The model is shown to produce consistent expert level performance at a less than negligible cost. At an estimated 0.78 USD per million predictions the model can generate value in settings with CTG qualified personnel and all the more in their absence.

Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5438 ◽  
Author(s):  
Valentín Barral ◽  
Carlos J. Escudero ◽  
José A. García-Naya ◽  
Pedro Suárez-Casal

Indoor positioning systems based on radio frequency inherently present multipath-related phenomena. This causes ranging systems such as ultra-wideband (UWB) to lose accuracy when detecting secondary propagation paths between two devices. If a positioning algorithm uses ranging measurements without considering these phenomena, it will face critical errors in estimating the position. This work analyzes the performance obtained in a localization system when combining location algorithms with machine learning techniques applied to a previous classification and mitigation of the propagation effects. For this purpose, real-world cross-scenarios are considered, where the data extracted from low-cost UWB devices for training the algorithms come from a scenario different from that considered for the test. The experimental results reveal that machine learning (ML) techniques are suitable for detecting non-line-of-sight (NLOS) ranging values in this situation.


Author(s):  
Padmavathi .S ◽  
M. Chidambaram

Text classification has grown into more significant in managing and organizing the text data due to tremendous growth of online information. It does classification of documents in to fixed number of predefined categories. Rule based approach and Machine learning approach are the two ways of text classification. In rule based approach, classification of documents is done based on manually defined rules. In Machine learning based approach, classification rules or classifier are defined automatically using example documents. It has higher recall and quick process. This paper shows an investigation on text classification utilizing different machine learning techniques.


Sign in / Sign up

Export Citation Format

Share Document