scholarly journals Personal space Increases during the COVID-19 Pandemic in Response to Real and Virtual Humans

Author(s):  
Daphne J Holt ◽  
Sarah Zapetis ◽  
Baktash Babadi ◽  
Roger B.H. Tootell

Typically, people maintain a certain distance from others (personal space) during daily life, in a largely automatic, unconscious manner. However during the COVID-19 pandemic, social distancing recommendations led to deliberate expansions of personal space outside of intimate social circles. In the laboratory, personal space preferences are quite stable over repeated measurements. Here, we collected such measurements both before and during the pandemic in the same individuals, using both conventional and virtual reality-based techniques. We found that the size of personal space, and discomfort ratings in response to personal space intrusions, increased significantly during the COVID-19 pandemic, in response to both real humans and virtual others. Moreover, this increase in personal space requirements correlated with the perceived, not the actual, risk of being infected with COVID-19, even in a virtual reality environment in which there was no possibility of infection. Thus, quantification of personal space may reveal some of the psychological effects of the pandemic, and subsequent progress towards recovery.

2019 ◽  
Vol 14 ◽  
pp. 263310551989680 ◽  
Author(s):  
Kazushige Kimura ◽  
James F Reichert ◽  
Debbie M Kelly ◽  
Zahra Moussavi

Daily life requires accurate navigation, and thus better understanding of aging on navigational abilities is critical. Importantly, the use of spatial properties by older and younger adults remains unclear. During this study, younger and older human adults were presented with a virtual environment in which they had to navigate a series of hallways. The hallways provided 2 general types of spatial information: geometric, which included distance and directional turns along a learned route, and featural, which included landmarks situated along the route. To investigate how participants used these different cue types, geometric and/or landmark information was manipulated during testing trials. Data from 40 younger (20 women) and 40 older (20 women) adults were analyzed. Our findings suggest that (1) both younger and older adults relied mostly on landmarks to find their way, and (2) younger adults were better able to adapt to spatial changes to the environment compared with older adults.


2004 ◽  
Vol 63 (3) ◽  
pp. 143-149 ◽  
Author(s):  
Fred W. Mast ◽  
Charles M. Oman

The role of top-down processing on the horizontal-vertical line length illusion was examined by means of an ambiguous room with dual visual verticals. In one of the test conditions, the subjects were cued to one of the two verticals and were instructed to cognitively reassign the apparent vertical to the cued orientation. When they have mentally adjusted their perception, two lines in a plus sign configuration appeared and the subjects had to evaluate which line was longer. The results showed that the line length appeared longer when it was aligned with the direction of the vertical currently perceived by the subject. This study provides a demonstration that top-down processing influences lower level visual processing mechanisms. In another test condition, the subjects had all perceptual cues available and the influence was even stronger.


2017 ◽  
Vol 5 (3) ◽  
pp. 15
Author(s):  
GANDOTRA SANDEEP ◽  
Pungotra Harish ◽  
Moudgil Prince Kumar ◽  
◽  
◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 287-288
Author(s):  
Jeffrey Hausdorff ◽  
Nofar Schneider ◽  
Marina Brozgol ◽  
Pablo Cornejo Thumm ◽  
Nir Giladi ◽  
...  

Abstract The simultaneous performance of a secondary task while walking (i.e., dual tasking) increases motor-cognitive interference and fall risk in older adults. Combining transcranial direct current stimulation (tDCS) with the concurrent performance of a task that putatively involves the same brain networks targeted by the tDCS may reduce the negative impact of dual-tasking on walking. We examined whether tDCS applied while walking reduces the dual-task costs to gait and whether this combination is better than tDCS alone or walking alone (with sham stimulation). In 25 healthy older adults (aged 75.7±10.5yrs), a double-blind, within-subject, cross-over pilot study evaluated the acute after-effects of 20 minutes of tDCS targeting the primary motor cortex and the dorsal lateral pre frontal cortex during three separate sessions:1) tDCS while walking on a treadmill in a virtual-reality environment (tDCS+walking), 2) tDCS while seated (tDCS+seated), and 3) walking in the virtual-reality environment with sham tDCS (sham+walking). The complex walking condition taxed motor and cognitive abilities. During each session, single- and dual-task walking and cognitive function were assessed before and immediately after stimulation. Compared to pre-tDCS performance, tDCS+walking reduced the dual-task cost to gait speed (p=0.004) and other gait features (e.g., variability p=0.02), and improved (p<0.001) executive function (Stroop interference score). tDCS+seated and sham+walking did not affect the dual-task cost to gait speed (p>0.17). These initial findings demonstrate that tDCS delivered during challenging walking ameliorates dual-task gait and executive function in older adults, suggesting that the concurrent performance of related tasks enhances the efficacy of the neural stimulation and mobility.


Sign in / Sign up

Export Citation Format

Share Document