scholarly journals The locus of recognition memory signals in human cortex depends on the complexity of the memory representations

2021 ◽  
Author(s):  
D. Merika W. Sanders ◽  
Rosemary A. Cowell

Representational theories predict that brain regions contribute to cognition according to the information they represent (e.g., simple versus complex), contradicting the traditional notion that brain regions are specialized for cognitive functions (e.g., perception versus memory). In support of representational accounts, substantial evidence now attests that the Medial Temporal Lobe (MTL) is not specialized solely for long-term declarative memory, but underpins other functions including perception and future-imagining for complex stimuli and events. However, a complementary prediction has been less well explored, namely that the cortical locus of declarative memory may fall outside the MTL if the to-be-remembered content is sufficiently simple. Specifically, the locus should coincide with the optimal neural code for the representations being retrieved. To test this prediction, we manipulated the complexity of the to-be-remembered representations in a recognition memory task. First, participants in the scanner viewed novel 3D objects and scenes, and we used multivariate analyses to identify regions in the ventral visual-MTL pathway that preferentially coded for either simple features of the stimuli, or complex conjunctions of those features. Next, in a separate scan, we tested recognition memory for these stimuli and performed neuroimaging contrasts that revealed two memory signals ‒ feature memory and conjunction memory. Feature memory signals were found in visual cortex, while conjunction memory signals emerged in MTL. Further, the regions optimally representing features via preferential feature-coding coincided with those exhibiting feature memory signals. These findings suggest that representational content, rather than cognitive function, is the primary organizing principle in the ventral visual-MTL pathway.

1997 ◽  
Vol 9 (6) ◽  
pp. 699-713 ◽  
Author(s):  
Stephan B. Hamann ◽  
Larry R. Squire

Recent studies have challenged the notion that priming for ostensibly novel stimuli such as pseudowords (REAB) reflects the creation of new representations. Priming for such stimuli could instead reflect the activation of familiar memory representations that are orthographically similar (READ) and/or the activation of subparts of stimuli (RE, EX, AR), which are familar because they occur commonly in English. We addressed this issue in three experiments that assessed perceptual identification priming and recognition memory for novel and familiar letter strings in amnesic patients and control subjects. Priming for words, pseudowords, and orthographically illegal nonwords was fully intact in the amnesic patients following a single exposure, whereas recognition memory was impaired for the same items. Thus, priming can occur for stimuli that are unlikely to have preexisting representations. Words and pseudowords exhibited twice as much priming as illegal nonwords, suggesting that activation may contribute to priming for words and wordlike stimuli. Additional results showed that priming for illegal nonwords resulted from the formation of new perceptual associations among the component letters of each nonword rather than the activation of individual letter representations. In summary, the results demonstrate that priming following a single exposure can depend on the creation of new perceptual representations and that such priming is independent of the brain structures essential for declarative memory.


2006 ◽  
Vol 18 (10) ◽  
pp. 1654-1662 ◽  
Author(s):  
Indre V. Viskontas ◽  
Barbara J. Knowlton ◽  
Peter N. Steinmetz ◽  
Itzhak Fried

Different structures within the medial-temporal lobe likely make distinct contributions to declarative memory. In particular, several current psychological and computational models of memory predict that the hippocampus and parahippocampal regions play different roles in the formation and retrieval of declarative memories [e.g., Norman, K. A., & O'Reilly, R. C. Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning systems approach. Psychological Review, 110, 611–646, 2003]. Here, we examined the neuronal firing patterns in these two regions during recognition memory. Recording directly from neurons in humans, we find that cells in both regions respond to novel stimuli with an increase in firing (excitation). However, already on the second presentation of a stimulus, neurons in these regions show very different firing patterns. In the parahippocampal region there is dramatic decrease in the number of cells responding to the stimuli, whereas in the hippocampus there is recruitment of a large subset of neurons showing inhibitory (decrease from baseline firing) responses. These results suggest that inhibition is a mechanism used by cells in the human hippocampus to support sparse coding in mnemonic processing. The findings also provide further evidence for the division of labor in the medial-temporal lobe with respect to declarative memory processes.


2019 ◽  
Author(s):  
Rosemary Cowell ◽  
Morgan Barense ◽  
Patrick Sadil

Thanks to patients Phineas Gage and Henry Molaison, we have long known that behavioral control depends on the frontal lobes, whereas declarative memory depends on the medial temporal lobes. For decades, cognitive functions – behavioral control, declarative memory – have served as labels for characterizing the division of labor in cortex. This approach has made enormous contributions to understanding how the brain enables the mind, providing a systems-level explanation of brain function that constrains lower-level investigations of neural mechanism. Today, the approach has evolved such that functional labels are often applied to brain networks rather than focal brain regions. Furthermore, the labels have diversified to include both broadly-defined cognitive functions (declarative memory, visual perception) and more circumscribed mental processes (recollection, familiarity, priming). We ask whether a process – a high-level mental phenomenon corresponding to an introspectively-identifiable cognitive event – is the most productive label for dissecting memory. For example, the process of recollection conflates a neurocomputational operation (pattern completion-based retrieval) with a class of representational content (associative, high-dimensional, episodic-like memories). Because a full theory of memory must identify operations and representations separately, and specify how they interact, we argue that processes like recollection constitute inadequate labels for characterizing neural mechanisms. Instead, we advocate considering the component operations and representations of mnemonic processes in isolation, when examining their neural underpinnings. For the neuroanatomical organization of memory, the evidence suggests that pattern completion is recapitulated widely across cortex, but the division of labor between cortical sites can be explained by representational content.


2020 ◽  
Vol 14 ◽  
Author(s):  
Giorgia Committeri ◽  
Agustina Fragueiro ◽  
Maria Maddalena Campanile ◽  
Marco Lagatta ◽  
Ford Burles ◽  
...  

The medial temporal lobe supports both navigation and declarative memory. On this basis, a theory of phylogenetic continuity has been proposed according to which episodic and semantic memories have evolved from egocentric (e.g., path integration) and allocentric (e.g., map-based) navigation in the physical world, respectively. Here, we explored the behavioral significance of this neurophysiological model by investigating the relationship between the performance of healthy individuals on a path integration and an episodic memory task. We investigated the path integration performance through a proprioceptive Triangle Completion Task and assessed episodic memory through a picture recognition task. We evaluated the specificity of the association between performance in these two tasks by including in the study design a verbal semantic memory task. We also controlled for the effect of attention and working memory and tested the robustness of the results by including alternative versions of the path integration and semantic memory tasks. We found a significant positive correlation between the performance on the path integration the episodic, but not semantic, memory tasks. This pattern of correlation was not explained by general cognitive abilities and persisted also when considering a visual path integration task and a non-verbal semantic memory task. Importantly, a cross-validation analysis showed that participants' egocentric navigation abilities reliably predicted episodic memory performance. Altogether, our findings support the hypothesis of a phylogenetic continuity between egocentric navigation and episodic memory and pave the way for future research on the potential causal role of egocentric navigation on multiple forms of episodic memory.


Hippocampus ◽  
2005 ◽  
Vol 15 (7) ◽  
pp. 890-900 ◽  
Author(s):  
Florian Mormann ◽  
Juergen Fell ◽  
Nikolai Axmacher ◽  
Bernd Weber ◽  
Klaus Lehnertz ◽  
...  

2020 ◽  
Author(s):  
Jakub Kopal ◽  
Jaroslav Hlinka ◽  
Elodie Despouy ◽  
Luc Valton ◽  
Marie Denuelle ◽  
...  

Recognition memory is the ability to recognize previously encountered events, objects, or people. It is characterized by its robustness and rapidness. Even this relatively simple ability requires the coordinated activity of a surprisingly large number of brain regions. These spatially distributed, but functionally linked regions are interconnected into large-scale networks. Understanding memory requires an examination of the involvement of these networks and the interactions between different regions while memory processes unfold. However, little is known about the dynamical organization of large-scale networks during the early phases of recognition memory. We recorded intracranial EEG, which affords high temporal and spatial resolution, while epileptic subjects performed a visual recognition memory task. We analyzed dynamic functional and effective connectivity as well as network properties. Various networks were identified, each with its specific characteristics regarding information flow (feedforward or feedback), dynamics, topology, and stability. The first network mainly involved the right visual ventral stream and bilateral frontal regions. It was characterized by early predominant feedforward activity, modular topology, and high stability. It was followed by the involvement of a second network, mainly in the left hemisphere, but notably also involving the right hippocampus, characterized by later feedback activity, integrated topology, and lower stability. The transition between networks was associated with a change in network topology. Overall, these results confirm that several large-scale brain networks, each with specific properties and temporal manifestation, are involved during recognition memory. Ultimately, understanding how the brain dynamically faces rapid changes in cognitive demand is vital to our comprehension of the neural basis of cognition.


2019 ◽  
Vol 30 (5) ◽  
pp. 2961-2971 ◽  
Author(s):  
Elodie Despouy ◽  
Jonathan Curot ◽  
Martin Deudon ◽  
Ludovic Gardy ◽  
Marie Denuelle ◽  
...  

Abstract One key item of information retrieved when surveying our visual world is whether or not objects are familiar. However, there is no consensus on the respective roles of medial temporal lobe structures, particularly the perirhinal cortex (PRC) and hippocampus. We considered whether the PRC could support a fast recognition memory system independently from the hippocampus. We recorded the intracerebral electroencephalograph activity of epileptic patients while they were performing a fast visual recognition memory task, constraining them to use their quickest strategy. We performed event-related potential (ERP) and classification analyses. The PRC was, by far, the earliest region involved in recognition memory. This activity occurred before the first behavioral responses and was found to be related to reaction times, unlike the hippocampus. Single-trial analyses showed that decoding power was equivalent in the PRC and hippocampus but occurred much earlier in the PRC. A critical finding was that recognition memory-related activity occurred in different frontal and parietal regions, including the supplementary motor area, before the hippocampus. These results, based on ERP analyses, suggest that the human brain is equipped with a fast recognition memory system, which may bypass the hippocampus and in which the PRC plays a critical role.


2010 ◽  
Vol 22 (3) ◽  
pp. 590-601 ◽  
Author(s):  
Patric Meyer ◽  
Axel Mecklinger ◽  
Angela D. Friederici

Recognition memory based on familiarity judgments is a form of declarative memory that has been repeatedly associated with the anterior medial temporal lobe. It has been argued that this region sustains familiarity-based recognition not only by retrieving item-specific information but also by coding for those semantic aspects of an event that support later familiarity-based recognition. Here, we used event-related fMRI to directly examine whether the contribution of anterior medial temporal lobe to declarative memory indeed results from its role in processing semantic aspects of an event. For this purpose, a sentence comprehension task was employed which varied the demands of semantic and syntactic processing of the sentence-final word. By presenting those sentence-final words together with new words in a subsequent incidental recognition memory test, we were able to determine the mnemonic consequences of presenting words in different sentential contexts. Results showed that enhanced semantic processing during comprehension activates regions in medial temporal lobe cortex and leads to response suppression in partly overlapping regions when the word is successfully retrieved. Data from a behavioral follow-up study support the view that enhanced semantic processing at study enhances familiarity-based remembering in a subsequent test phase.


2018 ◽  
Author(s):  
Anna Blumenthal ◽  
Bobby Stojanoski ◽  
Chris Martin ◽  
Rhodri Cusack ◽  
Stefan Köhler

ABSTRACTIdentifying what an object is, and whether an object has been encountered before, is a crucial aspect of human behavior. Despite this importance, we do not have a complete understanding of the neural basis of these abilities. Investigations into the neural organization of human object representations have revealed category specific organization in the ventral visual stream in perceptual tasks. Interestingly, these categories fall within broader domains of organization, with distinctions between animate, inanimate large, and inanimate small objects. While there is some evidence for category specific effects in the medial temporal lobe (MTL), it is currently unclear whether domain level organization is also present across these structures. To this end, we used fMRI with a continuous recognition memory task. Stimuli were images of objects from several different categories, which were either animate or inanimate, or large or small within the inanimate domain. We employed representational similarity analysis (RSA) to test the hypothesis that object-evoked responses in MTL structures during recognition-memory judgments also show evidence for domain-level organization along both dimensions. Our data support this hypothesis. Specifically, object representations were shaped by either animacy, real-world size, or both, in perirhinal and parahippocampal cortex, as well as the hippocampus. While sensitivity to these dimensions differed when structures when probed individually, hinting at interesting links to functional differentiation, similarities in organization across MTL structures were more prominent overall. These results argue for continuity in the organization of object representations in the ventral visual stream and the MTL.


2021 ◽  
Author(s):  
Heidrun Schultz ◽  
Tobias Sommer ◽  
Jan Peters

AbstractDuring associative retrieval, the brain reinstates neural representations that were present during encoding. The human medial temporal lobe (MTL) with its subregions hippocampus (HC), perirhinal cortex (PRC), and parahippocampal cortex (PHC) plays a central role in neural reinstatement. Previous studies have given compelling evidence for reinstatement in the MTL during explicitly instructed associative retrieval. High-confident recognition may be similarly accompanied by recollection of associated information from the encoding context. It is unclear, however, whether high-confident recognition memory elicits reinstatement in the MTL even in the absence of an explicit instruction to retrieve associated information. Here, we addressed this open question using high-resolution fMRI. Twenty-eight male and female human volunteers engaged in a recognition memory task for words that they had previously encoded together with faces and scenes. Using complementary uni- and multivariate approaches, we show that MTL subregions including the PRC, PHC, and HC differentially reinstate category-specific representations during high-confident word recognition, even though no explicit instruction to retrieve the associated category was given. This constitutes novel evidence that high-confident recognition memory is accompanied by incidental reinstatement of associated category information in MTL subregions, and supports a functional model of the MTL that emphasises content-sensitive representations during both encoding and retrieval.


Sign in / Sign up

Export Citation Format

Share Document