scholarly journals Urinary cell mRNA Profiling of Kidney Allograft Recipients: A Systematic Investigation of a Filtration Based Protocol for the Simplification of Urine Processing

Author(s):  
Catherine Snopkowski ◽  
Thalia Salinas ◽  
Carol Li ◽  
Gabriel Stryjniak ◽  
Ruchuang Ding ◽  
...  

Background. Kidney transplantation is a life-restorative therapy, but immune rejection undermines allograft survival. Urinary cell mRNA profiles offer a noninvasive means of diagnosing kidney allograft rejection, but urine processing protocols have logistical constraints. We aimed to determine whether the centrifugation-based method for urinary cell mRNA profiling could be replaced with a simpler filtration-based method without undermining quality. Methods. We isolated RNA from urine collected from kidney allograft recipients using the Cornell centrifugation-based protocol (CCBP) or the Zymo filter-based protocol (ZFBP) and compared RNA purity and yield using a spectrophotometer or a fluorometer and measured absolute copy number of transcripts using customized real-time quantitative PCR assays. We investigated the performance characteristics of RNA isolated using ZFBP and stored either at -80oC or at ambient temperature for 2 to 4 days and also when shipped to our Gene Expression Monitoring (GEM) Core at ambient temperature. We examined the feasibility of initial processing of urine samples by kidney allograft recipients trained by the GEM Core staff and the diagnostic utility for acute rejection, of urine processed using the ZFBP. Results. RNA purity (P=0.0007, Wilcoxon matched paired signed-ranks test ) and yield (P<0.0001) were higher with ZFBP vs. CCBP, and absolute copy number of 18S rRNA was similar (P=0.79) following normalization of RNA yield by reverse transcribing a constant amount of RNA isolated using either protocol. RNA purity, yield, and absolute copy numbers of 18S rRNA, TGF-β1 mRNA and microRNA-26a were not different (P>0.05) in the filtrates containing RNA stored either at -800C or at ambient temperature for 2 to 4 days or shipped overnight at ambient temperature. RNA purity, yield, and absolute copy numbers of 18S rRNA and TGF-β1 mRNA were also not different (P>0.05) between home processed and laboratory processed urine filtrates. Urinary cell levels of mRNA for granzyme B (P=0.01) and perforin (P=0.0002) in the filtrates were diagnostic of acute rejection in human kidney allografts. Conclusions. Urinary cell mRNA profiling was simplified using the ZFBP without undermining RNA quality or diagnostic utility. Home processing by the kidney allograft recipients, the stability of RNA containing filtrates at ambient temperature, and the elimination of the need for centrifuges and freezers represent some of the advantages of ZFBP over the CCBP for urinary cell mRNA profiling.

Genome ◽  
1995 ◽  
Vol 38 (1) ◽  
pp. 97-104 ◽  
Author(s):  
G. A. Wyngaard ◽  
I. A. McLaren ◽  
M. M. White ◽  
J.-M. Sévigny

We report on copy numbers of 18S ribosomal RNA genes in three species of copepods (Crustacea: Copepoda), two of which possess an unusual arrangement in which 5S genes are included within the 18S–5.8S–28S repeat unit. Slot blots of genomic and standard DNA were hybridized with an 18S rRNA gene probe constructed from one of the marine species and hybridization was quantified using chemiluminescence. Diploid 18S rRNA gene copy numbers are estimated as ca. 15 300 and 33 500 in the marine species Calanus finmarchicus (13.0 pg DNA in 2C adult nuclei) and C. glacialis (24.2 pg DNA), respectively, and ca. 840 and 730 in two freshwater populations of Mesocyclops edax (both ca. 3 pg DNA) from Virginia and Nova Scotia, respectively. The roughly proportional relationship between 2C somatic nuclear DNA contents and rRNA gene copy number in the sibling species C. finmarchicus and C. glacialis may reflect polytenic replication of entire genomes during abrupt speciation events. Copy numbers may also reflect differential losses during embryonic chromatin diminution.Key words: rRNA genes, copy number, genome size, Calanus, Mesocyclops.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xinping Fan ◽  
Guanghao Luo ◽  
Yu S. Huang

Abstract Background Copy number alterations (CNAs), due to their large impact on the genome, have been an important contributing factor to oncogenesis and metastasis. Detecting genomic alterations from the shallow-sequencing data of a low-purity tumor sample remains a challenging task. Results We introduce Accucopy, a method to infer total copy numbers (TCNs) and allele-specific copy numbers (ASCNs) from challenging low-purity and low-coverage tumor samples. Accucopy adopts many robust statistical techniques such as kernel smoothing of coverage differentiation information to discern signals from noise and combines ideas from time-series analysis and the signal-processing field to derive a range of estimates for the period in a histogram of coverage differentiation information. Statistical learning models such as the tiered Gaussian mixture model, the expectation–maximization algorithm, and sparse Bayesian learning were customized and built into the model. Accucopy is implemented in C++ /Rust, packaged in a docker image, and supports non-human samples, more at http://www.yfish.org/software/. Conclusions We describe Accucopy, a method that can predict both TCNs and ASCNs from low-coverage low-purity tumor sequencing data. Through comparative analyses in both simulated and real-sequencing samples, we demonstrate that Accucopy is more accurate than Sclust, ABSOLUTE, and Sequenza.


2021 ◽  
Author(s):  
Matheus Fernandes Gyorfy ◽  
Emma R Miller ◽  
Justin L Conover ◽  
Corrinne E Grover ◽  
Jonathan F Wendel ◽  
...  

The plant genome is partitioned across three distinct subcellular compartments: the nucleus, mitochondria, and plastids. Successful coordination of gene expression among these organellar genomes and the nuclear genome is critical for plant function and fitness. Whole genome duplication events (WGDs) in the nucleus have played a major role in the diversification of land plants and are expected to perturb the relative copy number (stoichiometry) of nuclear, mitochondrial, and plastid genomes. Thus, elucidating the mechanisms whereby plant cells respond to the cytonuclear stoichiometric imbalance that follow WGDs represents an important yet underexplored question in understanding the evolutionary consequences of genome doubling. We used droplet digital PCR (ddPCR) to investigate the relationship between nuclear and organellar genome copy numbers in allopolyploids and their diploid progenitors in both wheat and Arabidopsis. Polyploids exhibit elevated organellar genome copy numbers per cell, largely preserving the cytonuclear stoichiometry observed in diploids despite the change in nuclear genome copy number. To investigate the timescale over which cytonuclear stoichiometry may respond to WGD, we also estimated organellar genome copy number in Arabidopsis synthetic autopolyploids and in a haploid-induced diploid line. We observed corresponding changes in organellar genome copy number in these laboratory-generated lines, indicating that at least some of the cellular response to cytonuclear stoichiometric imbalance is immediate following WGD. We conclude that increases in organellar genome copy numbers represent a common response to polyploidization, suggesting that maintenance of cytonuclear stoichiometry is an important component in establishing polyploid lineages.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Bogacz ◽  
Marlena Wolek ◽  
Jerzy Sieńko ◽  
Bogusław Czerny ◽  
Bogusław Machaliński ◽  
...  

AbstractOrgan transplant is often the treatment of choice as it extends and improves patient life. Immunosuppressive treatment, which prevents acute rejection of the organ, is used in transplant patients to prevent the loss of transplant. The aim of the study was to determine the impact of the CTLA4 (+49A>G, rs231775) and the TGF-β1 (−800G>A, rs1800468) polymorphisms on the therapeutic effect of immunosuppressive drugs (cyclosporine—CsA, tacrolimus—TAC) and the risk of acute rejection in renal transplant patients. The analysis of the CTLA4 +49A>G and the TGF-β1 −800G>A polymorphisms was carried out in 392 patients after kidney transplant using real-time PCR. The CTLA4 +49A>G polymorphism did not affect CsA or TAC dose, ratio of drug concentration to dose (C/D), and blood concentrations. As for the TGF-β1 -800G>A polymorphism, patients with the GA genotype required lower TAC doses compared to the GG genotype (TAC 12 h: 3.63 mg vs 5.3 mg, TAC 24 h: 2.38 mg vs 3.29 mg). Comparing the C/D ratio in both groups (TAC 12 h and TAC 24 h), higher C/D ratio was observed in patients with the GA genotype. These results indicate that patients with the A allele require slightly lower doses of TAC. The results suggest that the TGF-β1 −800 G>A polymorphism may influence the TAC dose, while the +49A>G polymorphism of the CTLA4 gene does not correlate with the dose of CsA or TAC. The analysis of the biochemical parameters of the renal profile showed no impact of the CTLA4 and the TGF-β1 polymorphisms on the risk of organ rejection.


2018 ◽  
Vol 84 (11) ◽  
Author(s):  
Oscar van Mastrigt ◽  
Marcel M. A. N. Lommers ◽  
Yorick C. de Vries ◽  
Tjakko Abee ◽  
Eddy J. Smid

ABSTRACTLactic acid bacteria can carry multiple plasmids affecting their performance in dairy fermentations. The expression of plasmid-borne genes and the activity of the corresponding proteins are severely affected by changes in the numbers of plasmid copies. We studied the impact of growth rate on the dynamics of plasmid copy numbers at high growth rates in chemostat cultures and down to near-zero growth rates in retentostat cultures. Five plasmids of the dairy strainLactococcus lactisFM03-V1 were selected, and these varied in size (3 to 39 kb), in replication mechanism (theta or rolling circle), and in putative (dairy-associated) functions. The copy numbers ranged from 1.5 to 40.5, and the copy number of theta-type replicating plasmids was negatively correlated to the plasmid size. Despite the extremely wide range of growth rates (0.0003 h−1to 0.6 h−1), the copy numbers of the five plasmids were stable and only slightly increased at near-zero growth rates, showing that the plasmid replication rate was strictly controlled. One low-copy-number plasmid, carrying a large exopolysaccharide gene cluster, was segregationally unstable during retentostat cultivations, reflected in a complete loss of the plasmid in one of the retentostat cultures. The copy number of the five plasmids was also hardly affected by varying the pH value, nutrient limitation, or the presence of citrate (maximum 2.2-fold), signifying the stability in copy number of the plasmids.IMPORTANCELactococcus lactisis extensively used in starter cultures for dairy fermentations. Important traits for the growth and survival ofL. lactisin dairy fermentations are encoded by genes located on plasmids, such as genes involved in lactose and citrate metabolism, protein degradation, oligopeptide uptake, and bacteriophage resistance. Because the number of plasmid copies could affect the expression of plasmid-borne genes, it is important to know the factors that influence the plasmid copy numbers. We monitored the plasmid copy numbers ofL. lactisat near-zero growth rates, characteristic for cheese ripening. Moreover, we analyzed the effects of pH, nutrient limitation, and the presence of citrate. This showed that the plasmid copy numbers were stable, giving insight into plasmid copy number dynamics in dairy fermentations.


Author(s):  
Vannarut Satitpitakul ◽  
Chaturong Putaporntip ◽  
Somchai Jongwutiwes

Acanthamoeba keratitis is predominantly caused by genotype T4. We report a case of severe keratitis caused by Acanthamoeba in a 39-year-old man who had prior accidental exposure to a corrosive chemical. The patient developed central full thickness ring infiltration and epithelial defect with hypopyon that required keratoplasty. The acanthamoebae isolated from the patient exhibited thermotolerance phenotype with the capability to grow well at ambient temperature and at 42°C. Analysis of a near complete 18S rRNA gene of this isolate revealed a distinct sequence that can be unequivocally assigned to genotype T12, a rare genotype incriminated in corneal infections.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Ryousuke Satou ◽  
Akemi Katsurada ◽  
Kayoko Miyata ◽  
Andrei Derbenev ◽  
Andrea Zsombok

The intrarenal renin-angiotensin system (RAS) has been shown to play crucial roles in the development of hypertension and RAS associated kidney injury including diabetic nephropathy. Although some circulating RAS components are filtered into kidneys and contribute to the regulation of intrarenal RAS activity, evaluating expression levels of RAS components in the kidney is important to elucidate the mechanisms underlying intrarenal RAS activation. Digital PCR is a new technique that has been established to quantify absolute target gene levels, which allows for comparisons of different gene levels. Thus, this study was performed to establish profiles of absolute gene copy numbers for intrarenal RAS components in wild-type (WT) rats, WT and streptozotocin (STZ)-induced diabetic mice. Male Sprague-Dawley rats (N=5) and male C57BL/6J mice were used in this study. The mice were subjected to either control (N=5) or STZ (200 mg/kg, N=4) injection. Seven days after STZ injection, copy numbers of renal cortical angiotensinogen (AGT), angiotensin-converting enzyme (ACE), ACE2, angiotensin type 1 receptor a (AT1a), and AT2 mRNA were determined by a droplet digital PCR. Since (pro)renin proteins produced by juxtaglomerular cells are secreted to circulating system, analysis of renin mRNA was excluded from this evaluation. In the renal cortex of WT rats, the copy number of AGT was higher than other measured RAS components (AGT: 719.2±46.6, ACE: 116.0±14.9, ACE2: 183.6±21.5, AT1a: 196.0±25.2 copies in 1 ng total RNA). AT2 levels were lower than other components (0.068±0.01 copies). In WT mice, ACE exhibited the highest copy number in the components (AGT: 447.2±29.0, ACE: 1662.4±61.2, ACE2: 676.8±41.5, AT1a: 867.0±16.8, AT2: 0.049±0.01 copies). Although STZ-induced diabetes did not change ACE2 and AT1a, ACE levels were reduced (765.5±98.1 copies) and AT2 levels were augmented (0.10±0.01 copies) as previously demonstrated. Accordingly, the absolute quantification by digital PCR established precise gene profiles of intrarenal RAS components, which will provide rationales for targeting the each component in future studies. Furthermore, the results indicate that the high sensitive assay accurately quantifies rare target genes including intrarenal AT2.


Sign in / Sign up

Export Citation Format

Share Document