scholarly journals A PKA Inhibitor Motif within Smoothened Controls Hedgehog Signal Transduction

2021 ◽  
Author(s):  
John T. Happ ◽  
Corvin D. Arveseth ◽  
Jessica Bruystens ◽  
Daniela Bertinetti ◽  
Isaac B. Nelson ◽  
...  

The Hedgehog (Hh) cascade is central to development, tissue homeostasis, and cancer. A pivotal step in Hh signal transduction is the activation of GLI transcription factors by the atypical G protein-coupled receptor (GPCR) Smoothened (SMO). How SMO activates GLI has remained unclear for decades. Here we show that SMO employs a decoy substrate sequence to physically block the active site of the PKA catalytic subunit (PKA-C) and extinguish its enzymatic activity. As a result, GLI is released from phosphorylation-induced inhibition. Using a combination of in vitro, cellular, and organismal models, we demonstrate that interfering with SMO / PKA pseudosubstrate interactions prevents Hh signal transduction. The mechanism we uncovered echoes one utilized by the Wnt cascade, revealing an unexpected similarity in how these two essential developmental and cancer pathways signal intracellularly. More broadly, our findings define a new mode of GPCR-PKA communication that may be harnessed by a range of membrane receptors and kinases.

2020 ◽  
Author(s):  
Nicholas Morante ◽  
Monika Abedin Sigg ◽  
Luke Strauskulage ◽  
David R. Raleigh ◽  
Jeremy F. Reiter

ABSTRACTPrimary cilia are organelles specialized for signaling. We previously defined the proteomes of sea urchin and sea anemone cilia to identify ciliary proteins that predate the origin of bilateria. This evolutionary perspective on cilia identified DYRK2, a kinase not been previously implicated in ciliary biology. We found that DYRK2 localizes to cilia and that loss of DYRK2 disrupts ciliary morphology. We also found that DYRK2 participates in ciliary Hh signal transduction, communicating between SMO and GLI transcription factors. Mutation of mouse Dyrk2 resulted in skeletal defects reminiscent of those caused by loss of Indian hedgehog (Ihh). Like Dyrk2 mutations, pharmacological inhibition of DYRK2 dysregulates ciliary length control and attenuates Hedgehog signaling. Thus, DYRK2 is required for ciliary morphology, for Hedgehog signaling in vitro, and for skeletal development. We propose that DYRK2 is part of the mechanism that transduces SMO to activate GLI transcription factors within cilia.


2013 ◽  
Vol 394 (12) ◽  
pp. 1615-1622 ◽  
Author(s):  
Gerald Thiel ◽  
Anke Kaufmann ◽  
Oliver G. Rössler

Abstract G-protein-coupled receptors (GPCRs) are the largest group of plasma membrane receptors in nature and are activated by a variety of different ligands. The biological outcome of GPCR stimulation is complex, as a plethora of signaling pathways are activated upon stimulation. These complexity and diversity of GPCR signaling make it difficult to manipulate the signaling pathway of a specific GPCR by natural ligands. To reduce the complexity in experimental settings, specific pharmacological ligands that preferentially activate one signaling pathway have been developed. In addition, G-protein-coupled designer receptors that are unresponsive to endogenous ligands but can be activated by otherwise pharmacologically inert compounds have been designed. These receptors have been termed designer receptors exclusively activated by designer drugs. The lack of constitutive activity of these designer receptors allows their use for in vitro and in vivo studies of GPCR-mediated signal transduction. The analysis of recently generated transgenic mice showed that the expression of G-protein-coupled designer receptors represents a powerful chemical-genetic tool to investigate GPCR signaling and function.


2018 ◽  
Vol 18 (7) ◽  
pp. 985-992 ◽  
Author(s):  
Aysegul Hanikoglu ◽  
Ertan Kucuksayan ◽  
Rana Cagla Akduman ◽  
Tomris Ozben

This systematic review aims to elucidate the role of melatonin (N-acetyl-5-metoxy-tryptamine) (MLT) in the prevention and treatment of cancer. MLT is a pineal gland secretory product, an evolutionarily highly conserved molecule; it is also an antioxidant and an impressive protector of mitochondrial bioenergetic activity. MLT is characterized by an ample range of activities, modulating the physiology and molecular biology of the cell. Its physiological functions relate principally to the interaction of G Protein-Coupled MT1 and MT2 trans-membrane receptors (GPCRs), a family of guanidine triphosphate binding proteins. MLT has been demonstrated to suppress the growth of various tumours both, in vivo and in vitro. In this review, we analyze in depth, the antioxidant activity of melatonin, aiming to illustrate the cancer treatment potential of the molecule, by limiting or reversing the changes occurring during cancer development and growth.


Sign in / Sign up

Export Citation Format

Share Document