A Review on Melatonin’s Effects in Cancer: Potential Mechanisms

2018 ◽  
Vol 18 (7) ◽  
pp. 985-992 ◽  
Author(s):  
Aysegul Hanikoglu ◽  
Ertan Kucuksayan ◽  
Rana Cagla Akduman ◽  
Tomris Ozben

This systematic review aims to elucidate the role of melatonin (N-acetyl-5-metoxy-tryptamine) (MLT) in the prevention and treatment of cancer. MLT is a pineal gland secretory product, an evolutionarily highly conserved molecule; it is also an antioxidant and an impressive protector of mitochondrial bioenergetic activity. MLT is characterized by an ample range of activities, modulating the physiology and molecular biology of the cell. Its physiological functions relate principally to the interaction of G Protein-Coupled MT1 and MT2 trans-membrane receptors (GPCRs), a family of guanidine triphosphate binding proteins. MLT has been demonstrated to suppress the growth of various tumours both, in vivo and in vitro. In this review, we analyze in depth, the antioxidant activity of melatonin, aiming to illustrate the cancer treatment potential of the molecule, by limiting or reversing the changes occurring during cancer development and growth.

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1334
Author(s):  
Ye Liu ◽  
Zahra Mohri ◽  
Wissal Alsheikh ◽  
Umber Cheema

The development of biomimetic, human tissue models is recognized as being an important step for transitioning in vitro research findings to the native in vivo response. Oftentimes, 2D models lack the necessary complexity to truly recapitulate cellular responses. The introduction of physiological features into 3D models informs us of how each component feature alters specific cellular response. We conducted a systematic review of research papers where the focus was the introduction of key biomimetic features into in vitro models of cancer, including 3D culture and hypoxia. We analysed outcomes from these and compiled our findings into distinct groupings to ascertain which biomimetic parameters correlated with specific responses. We found a number of biomimetic features which primed cancer cells to respond in a manner which matched in vivo response.


2019 ◽  
Vol 39 (2) ◽  
Author(s):  
Xiao-Fei Liu ◽  
Jing-Wei Li ◽  
Hong-Zhi Chen ◽  
Zi-Yuan Sun ◽  
Guang-Xi Shi ◽  
...  

Abstract Background: Yanghe Huayan Decoction (YHD), a traditional Chinese medicine, is one of the most common complementary medicine currently used in the treatment of breast cancer (BC). It has been recently linked to suppress precancerous lesion and tumor development. The current study sought to explore the role of YHD on trans-endothelium and angiogenesis of BC. Methods: HER2+ BC cells were treated with YHD, Trastuzumab, or the combination in vitro and in vivo to compare the effects of them on trans-endothelium and angiogenesis features. The present study also investigated the potential molecular mechanism of YHD in inhibiting angiogenesis of BC. Results: YHD significantly suppressed the invasion and angiogenesis of BC cells via elevated pAkt signaling. Administration of YHD in vivo also strikingly repressed angiogenesis in tumor grafts. Conclusion: YHD could partially inhibit and reverse tumorigenesis of BC. It also could inhibit Akt activation and angiogenesis in vitro and in vivo. Its effect was superior to trastuzumab. Thus it was suitable for prevention and treatment of BC.


2012 ◽  
Vol 126 (3) ◽  
pp. 491-498 ◽  
Author(s):  
Dominique Trudel ◽  
David P. Labbé ◽  
Isabelle Bairati ◽  
Vincent Fradet ◽  
Laurent Bazinet ◽  
...  

Endocrinology ◽  
2011 ◽  
Vol 152 (10) ◽  
pp. 3706-3716 ◽  
Author(s):  
Isabel R. Orriss ◽  
Ning Wang ◽  
Geoffrey Burnstock ◽  
Timothy R. Arnett ◽  
Alison Gartland ◽  
...  

Accumulating evidence indicates that extracellular nucleotides, signaling through P2 receptors, play a significant role in bone remodeling. Osteoclasts (the bone-resorbing cell) and osteoblasts (the bone-forming cell) display expression of the G protein-coupled P2Y6 receptor, but the role of this receptor in modulating cell function is unclear. Here, we demonstrate that extracellular UDP, acting via P2Y6 receptors, stimulates the formation of osteoclasts from precursor cells, while also enhancing the resorptive activity of mature osteoclasts. Furthermore, osteoclasts derived from P2Y6 receptor-deficient (P2Y6R−/−) animals displayed defective function in vitro. Using dual energy x-ray absorptiometry scanning and microcomputed tomographic analysis we showed that P2Y6R−/− mice have increased bone mineral content, cortical bone volume, and cortical thickness in the long bones and spine, whereas trabecular bone parameters were unaffected. Histomorphometric analysis showed the perimeter of the bone occupied by osteoclasts on the endocortical and trabecular surfaces was decreased in P2Y6R−/− mice. Taken together these results show the P2Y6 receptor may play an important role in the regulation of bone cell function in vivo.


2020 ◽  
Vol 9 ◽  
Author(s):  
Fellipe Lopes De Oliveira ◽  
Thaise Yanka Portes Arruda ◽  
Renan Da Silva Lima ◽  
Sabrina Neves Casarotti ◽  
Maressa Caldeira Morzelle

Pomegranate, a recognized source of phenolic compounds, has been associated with health-promoting benefits, mostly due to its antioxidant activity. Ellagic and gallic acids, anthocyanins, and ellagitannins are the main phenolics in pomegranate, showing antioxidant activity. For this reason, pomegranate has been used in foods, such as meat products, as an attempt to retard lipid oxidation and increase shelf-life. In recent years, in vitro, in vivo, and human studies reported the antioxidant activity of pomegranate, especially its peels, with reduced incidence of chronic diseases (e.g., cardiovascular ailments, cancer, neurodegenerative disease, type 2 diabetes, chronic kidney disease). This review aims to present the main antioxidant compounds on pomegranate and their biological effects, the antioxidant activity of pomegranate-based foods, the application of pomegranate as a natural antioxidant food additive, the role of pomegranate in the prevention and management of chronic diseases, as well as the trends and prospects regarding the application of pomegranate in innovative food and health.


2011 ◽  
Vol 6 (5) ◽  
pp. 853-860 ◽  
Author(s):  
Md. Shahjahan ◽  
Hironori Ando

AbstractThe decapeptide gonadotropin-releasing hormone (GnRH) is the primary factor responsible for the hypothalamic control of gonadotropin (GTH) secretion. This review focuses on a family of neuropeptides, LPXRFamide (LPXRFa) peptides, which have been implicated in the regulation of GTH secretion. LPXRFa acts on the pituitary via a G protein-coupled receptor, LPXRFa-R, to enhance gonadal development and maintenance by increasing gonadotropin release and synthesis. Because LPXRFa exists and functions in several fish species, LPXRFa is considered to be a key neurohormone in fish reproduction control. The precursors to LPXRFamide peptides encoded plural LPXRFamide peptides and were highly divergent in vertebrates, particularly in lower vertebrates. Tissue distribution analyses indicated that LPXRFamide peptides were highly concentrated in the hypothalamus and other brainstem regions. In view of the localization and expression of LPXRFamide peptides in the hypothalamo-hypophysial system, LPXRFamide peptide in fish increase GTH release in vitro and in vivo. This review summarizes the advances made in our understanding of the biosynthesis, mode of action and functional significance of LPXRFa, a newly discovered key neurohormone.


2018 ◽  
Vol 19 (7) ◽  
pp. 2060 ◽  
Author(s):  
Magdalena Bachmann ◽  
Roberto Costa ◽  
Roberta Peruzzo ◽  
Elena Prosdocimi ◽  
Vanessa Checchetto ◽  
...  

In recent years, several experimental evidences have underlined a new role of ion channels in cancer development and progression. In particular, mitochondrial ion channels are arising as new oncological targets, since it has been proved that most of them show an altered expression during tumor development and the pharmacological targeting of some of them have been demonstrated to be able to modulate cancer growth and progression, both in vitro as well as in vivo in pre-clinical mouse models. In this scenario, pharmacology of mitochondrial ion channels would be in the near future a new frontier for the treatment of tumors. In this review, we discuss the new advances in the field, by focusing our attention on the improvements in new drug developments to target mitochondrial ion channels.


2013 ◽  
Vol 394 (12) ◽  
pp. 1615-1622 ◽  
Author(s):  
Gerald Thiel ◽  
Anke Kaufmann ◽  
Oliver G. Rössler

Abstract G-protein-coupled receptors (GPCRs) are the largest group of plasma membrane receptors in nature and are activated by a variety of different ligands. The biological outcome of GPCR stimulation is complex, as a plethora of signaling pathways are activated upon stimulation. These complexity and diversity of GPCR signaling make it difficult to manipulate the signaling pathway of a specific GPCR by natural ligands. To reduce the complexity in experimental settings, specific pharmacological ligands that preferentially activate one signaling pathway have been developed. In addition, G-protein-coupled designer receptors that are unresponsive to endogenous ligands but can be activated by otherwise pharmacologically inert compounds have been designed. These receptors have been termed designer receptors exclusively activated by designer drugs. The lack of constitutive activity of these designer receptors allows their use for in vitro and in vivo studies of GPCR-mediated signal transduction. The analysis of recently generated transgenic mice showed that the expression of G-protein-coupled designer receptors represents a powerful chemical-genetic tool to investigate GPCR signaling and function.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2532
Author(s):  
Ludovica Bartiromo ◽  
Matteo Schimberni ◽  
Roberta Villanacci ◽  
Jessica Ottolina ◽  
Carolina Dolci ◽  
...  

The aim of this systematic review was to provide comprehensive and available data on the possible role of phytoestrogens (PE) for the treatment of endometriosis. We conducted an advanced, systematic search of online medical databases PubMed and Medline. Only full-length manuscripts written in English up to September 2020 were considered. A total of 60 studies were included in the systematic review. According to in vitro findings, 19 out of 22 studies reported the ability of PE in inducing anti-proliferative, anti-inflammatory and proapoptotic effects on cultured cells. Various mechanisms have been proposed to explain this in vitro action including the alteration of cell cycle proteins, the activation/inactivation of regulatory pathways, and modification of radical oxidative species levels. Thirty-eight articles on the effects of phytoestrogens on the development of endometriotic lesions in in vivo experimental animal models of endometriosis have been included. In line with in vitro findings, results also derived from animal models of endometriosis generally supported a beneficial effect of the compounds in reducing lesion growth and development. Finally, only seven studies investigated the effects of phytoestrogens intake on endometriosis in humans. The huge amount of in vitro and in vivo animal findings did not correspond to a consistent literature in the women affected. Therefore, whether the experimental findings can be translated in women is currently unknown.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Oriane Razakarivony ◽  
Adrian Newman-Tancredi ◽  
Luc Zimmer

AbstractThe serotonin 5-HT1A receptor has attracted wide attention as a target for treatment of psychiatric disorders. Although this receptor is important in the pharmacological mechanisms of action of new-generation antipsychotics, its characterization remains incomplete. Studies based on in vitro molecular imaging on brain tissue by autoradiography, and more recently in vivo PET imaging, have not yielded clear results, in particular due to the limitations of current 5-HT1A radiotracers, which lack specificity and/or bind to all 5-HT1A receptors, regardless of their functional status. The new concept of PET neuroimaging of functionally active G-protein-coupled receptors makes it possible to revisit PET brain exploration by enabling new research paradigms. For the 5-HT1A receptor it is now possible to use [18F]-F13640, a 5-HT1A receptor radioligand with high efficacy agonist properties, to specifically visualize and quantify functionally active receptors, and to relate this information to subjects’ pathophysiological or pharmacological state. We therefore propose imaging protocols to follow changes in the pattern of functional 5-HT1A receptors in relation to mood deficits or cognitive processes. This could allow improved discrimination of different schizophrenia phenotypes and greater understanding of the basis of therapeutic responses to antipsychotic drugs. Finally, as well as targeting functionally active receptors to gain insights into the role of 5-HT1A receptors, the concept can also be extended to the study of other receptors involved in the pathophysiology or therapy of psychiatric disorders.


Sign in / Sign up

Export Citation Format

Share Document