scholarly journals A transmissible γδ intraepithelial lymphocyte hyperproliferative phenotype is associated with the intestinal microbiota and confers protection against acute infection.

2021 ◽  
Author(s):  
Luo Jia ◽  
Guojun Wu ◽  
Sara Alonso ◽  
Cuiping Zhao ◽  
Alexander Lemenze ◽  
...  

Intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IELs) serve as a first line of defense against luminal microbes. Although the presence of an intact microbiota is dispensable for γδ IEL development, several microbial factors contribute to the maintenance of this sentinel population. However, whether specific commensals influence population of the γδ IEL compartment under homeostatic conditions has yet to be determined. We identified a novel γδ IEL hyperproliferative phenotype that arises early in life and is characterized by expansion of multiple Vγ subsets. Horizontal transfer of this hyperproliferative phenotype to mice harboring a phenotypically normal γδ IEL compartment was prevented following antibiotic treatment, thus demonstrating that the microbiota is both necessary and sufficient for the observed increase in γδ IELs. Further, we identified a group of unique gut bacteria represented by 5 amplicon sequence variants (ASV) which are strongly associated with γδ IEL expansion. Using intravital microscopy, we find that hyperproliferative γδ IELs also exhibit increased migratory behavior leading to enhanced protection against bacterial infection. These findings reveal that transfer of a specific group of commensals can regulate γδ IEL homeostasis and immune surveillance, which may provide a novel means to reinforce the epithelial barrier.

1990 ◽  
Vol 20 (2) ◽  
pp. 291-298 ◽  
Author(s):  
Bernard de Geus ◽  
Margit van den Enden ◽  
Co Coolen ◽  
Lex Nagelkerken ◽  
Philip van der Heijden ◽  
...  

2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A19.1-A19
Author(s):  
JGM Strijker ◽  
E Drent ◽  
JJF van der Hoek ◽  
R Pscheid ◽  
B Koopmans ◽  
...  

BackgroundCurrently ~50% of patients with the diagnosis of high-risk neuroblastoma will not survive due to relapsing or refractory disease. Recent innovations in immunotherapy for solid tumors are highly promising, but the low MHC-I expression of neuroblastoma represents a major challenge for T cell-mediated immunotherapy. Here, we propose a novel T cell-based immunotherapy approach for neuroblastoma, based on the use of TEG002, αβ-T cells engineered to express a defined γδ-T cell receptor, which are thought to recognize and kill target cells independent of MHC-I. In this pilot project we have tested the potential efficacy of TEG002 therapy as a novel treatment for neuroblastoma, with tumor organoids.Materials and MethodsEffector cells were created from healthy donor peripheral blood T cells. The TEG002 cells were engineered by transducing αβ-T cells with a defined Vγ9Vδ2-T cell receptor. Both the untransduced αβ-T cells and the endogenous Vγ9Vδ2-T cells from the same healthy donor were used as controls in all experiments. Activation and killing of TEG002 was tested in a co-culture setting with neuroblastoma organoids. Supernatant of the co-culture was collected at 24 hours for IFNγ ELISA to measure activation of TEG002. The dynamics of cytotoxicity were analyzed over time from 0 till 72 hours, using the live-cell imaging system IncuCyte from Sartorius®. Killing was quantified using a Caspase3/7 Green dye and the IncuCyte software. Transcriptional profiling of the neuroblastoma organoids was done by RNA sequencing and MHC-I expression of the neuroblastoma organoids was determined by flow cytometry.ResultsWe showed that 3 out of 6 neuroblastoma organoids could activate TEG002 as measured by IFNγ production. Transcriptional profiling of the neuroblastoma organoids showed that this effect correlates with an increased activity of processes involved in interferon signaling and extracellular matrix organization. Analysis of the dynamics of organoid killing by TEG002 over time confirmed that organoids which induced TEG002 activation were efficiently killed independently of their MHC-I expression. Of note, efficacy of TEG002 treatment was superior to donor-matched untransduced αβ-T cells or endogenous γδ-T cells.ConclusionsWe demonstrated that 50% of tested neuroblastoma organoids can effectively activate TEG002 and that killing of the organoids is independent of MHC-I expression. Hence, this pilot study identified TEG002 as a promising novel cellular product for immunotherapy for a subset of neuroblastoma tumors, warranting further investigations into its clinical application.Disclosure InformationJ.G.M. Strijker: None. E. Drent: A. Employment (full or part-time); Significant; Gadeta BV. J.J.F. van der Hoek: None. R. Pscheid: A. Employment (full or part-time); Significant; Gadeta BV. B. Koopmans: None. K. Ober: None. S.R. van Hooff: None. W.M. Kholosy: None. C. Coomans: A. Employment (full or part-time); Significant; Gadeta BV. A. Bisso: A. Employment (full or part-time); Significant; Gadeta BV. M. van Loenen: A. Employment (full or part-time); Significant; Gadeta BV. J.J. Molenaar: None. J. Wienke: None.


1992 ◽  
Vol 175 (1) ◽  
pp. 65-70 ◽  
Author(s):  
T A Barrett ◽  
M L Delvy ◽  
D M Kennedy ◽  
L Lefrancois ◽  
L A Matis ◽  
...  

The present study examined mechanisms of tolerance for T cell receptor gamma/delta (TCR-gamma/delta) cells. Using a transgenic (Tg) model, we demonstrate that although alloantigen (Ag)-specific TCR-gamma/delta cells are deleted in the thymus and spleen of Ag-bearing mice, intraepithelial lymphocytes (IELs) expressing normal levels of the Tg TCR were present. However, Tg+ IELs from Ag-bearing mice were unresponsive to activation. Furthermore, self-reactive Tg+ IELs decreased in number over time. Thus, in epithelial tissue, Tg TCR-gamma/delta cells are eliminated subsequent to and most likely as a result of the induction of clonal anergy.


2012 ◽  
Vol 287 (25) ◽  
pp. 20986-20995 ◽  
Author(s):  
Jessica Bruder ◽  
Katherina Siewert ◽  
Birgit Obermeier ◽  
Joachim Malotka ◽  
Peter Scheinert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document