scholarly journals A rear-engine drives adherent tissue migration in vivo

2021 ◽  
Author(s):  
Naoya Yamaguchi ◽  
Ziyi Zhang ◽  
Teseo Schneider ◽  
Biran Wang ◽  
Daniele Panozzo ◽  
...  

During animal embryogenesis, homeostasis and disease, tissues push and pull on their surroundings to move forward. Although the force-generating machinery is known, it is unknown how tissues exert physical stresses on their substrate to generate motion in vivo. Here, we identify the force transmission machinery, the substrate, and the stresses that a tissue, the zebrafish posterior lateral line primordium, generates during its migration. We find that the primordium couples actin flow through integrins to the basement membrane for forward movement. Talin/integrin-mediated coupling is required for efficient migration and its loss is partly compensated for by increased actin flow. Using Embryogram, an approach to measure stresses in vivo, we show that the primordium's rear exerts high stresses, indicating that this tissue pushes itself forward with its back. This unexpected strategy likely also underlies the motion of other tissues in animals.

2019 ◽  
Author(s):  
Damian Dalle Nogare ◽  
Naveen Natesh ◽  
Ajay Chitnis

AbstractDuring embryonic development, cells must navigate through diverse three-dimensional environments robustly and reproducibly. The zebrafish posterior lateral line primordium (PLLp), a group of approximately 120 cells which migrates from the otic vesicle to the tip of the tail, spearheading the development of the lateral line sensory system, is an excellent model to study such collective migration in an in vivo context. This system migrates in a channel formed by the underlying horizontal myoseptum and somites, and the overlying skin. While cells in the leading part of the PLLp are flat and have a more mesenchymal morphology, cells in the trailing part progressively reorganize to form epithelial rosettes, called protoneuromasts. These epithelial cells extend basal cryptic lamellipodia in the direction of migration in response to both chemokine and FGF signals. In this study, we show that, in addition to these cryptic lamellipodia, the core epithelial cells are in fact surrounded by a population of motile cells which extend actin-rich migratory processes apposed to the overlying skin. These thin cells wrap around the protoneuromasts, forming a continuous sheath of cells around the apical and lateral surface of the PLLp. The processes extended by these cells are highly polarized in the direction of migration and this directionality, like that of the basal lamellipodia, is dependent on FGF signaling. Consistent with interactions of sheath cells with the overlying skin contributing to migration, removal of the skin stalls migration. However, this is accompanied by some surprising changes. There is a profound change in the morphology of the sheath cells, with directional superficial lamellipodia being replaced with the appearance of undirected blebs or ruffles. Furthermore, removal of the skin not only affects underlying lamellipodia, it simultaneously alters the morphology and behavior of the deeper basal cryptic lamellipodia, even though these cells do not directly contact the skin. Directional actin-rich protrusions on both the apical and basal surface and migration are completely and simultaneously restored upon regrowth of the skin over the PLLp. We suggest that this system utilizes a circumferential sheath of motile cells to allow the internal epithelial cells to migrate collectively in the confined space of the horizontal myopseptum and that elastic confinement provided by the overlying skin is essential for effective collective migratory behavior of primordium cells.


2008 ◽  
Vol 28 (50) ◽  
pp. 13384-13389 ◽  
Author(s):  
P. E. Pomata ◽  
M. A. Belluscio ◽  
L. A. Riquelme ◽  
M. G. Murer

2003 ◽  
Vol 90 (10) ◽  
pp. 598-606 ◽  
Author(s):  
Rashmi Yadav ◽  
Karen Larbi ◽  
Rebecca Young ◽  
Sussan Nourshargh

SummaryThe migration of leukocytes from the vascular lumen to sites of infection and/or injury in the extravascular tissue involves a series of sequential and coordinated molecular and cellular events with the resultant primary response being that of reduced leukocyte velocity within the blood stream, followed by leukocyte firm adhesion to endothelial cells lining the vessel wall and eventually migration through the vessel wall. Despite the growing knowledge of the mechanisms that mediate initial interaction of leukocytes with the endothelium, very little is known about the mechanisms that mediate and regulate leukocyte migration through the venular wall, the endothelium and its associated perivascular basement membrane. This review, whilst giving a brief outline of the stepwise cascade of molecular interactions involved in this process and the methods employed to investigate leukocyte migration in vivo, focuses primarily on mechanisms of leukocyte transmigration, the final step in the process of leukocyte emigration. Furthermore, special emphasis is placed on discussing the process and the mechanisms involved in leukocyte migration through the basement membrane, a structure that presents significant impedance to transmigrating leukocytes but is seldom investigated in the context of leukocyte transmigration in vivo. The review also discusses the growing evidence supporting the concept that leukocyte transmigration is not only a response that describes the passage of leukocytes through the venular wall, but also acts as a means of regulating leukocyte responsiveness beyond the vessel wall, i.e. within the extravascular tissue.This publication was partially financed by Serono Foundation for the Advancement of Medical Science.Part of this paper was originally presented at the 2nd International Workshop on New Therapeutic Targets in Vascular Biology from February 6-9, 2003 in Geneva, Switzerland.


2009 ◽  
Vol 106 (51) ◽  
pp. 21948-21953 ◽  
Author(s):  
A. Nagiel ◽  
S. H. Patel ◽  
D. Andor-Ardo ◽  
A. J. Hudspeth

Sign in / Sign up

Export Citation Format

Share Document