scholarly journals Tissue-based IL-10 signalling in helminth infection limits IFNγ expression and promotes the intestinal Th2 response

2021 ◽  
Author(s):  
Holly C. Webster ◽  
Virginia Gamino ◽  
Amy L. Shergold ◽  
Anna T. Andrusaite ◽  
Graham A. Heieis ◽  
...  

Type 2 immunity is activated in response to both allergens and helminth infection. It can be detrimental or beneficial, and there is a pressing need to better understand its regulation. The immunosuppressive cytokine IL-10 is known as a T helper 2 (Th2) effector molecule, but it is currently unclear whether IL-10 dampens or promotes Th2 differentiation during infection. Here we show that helminth infection in mice elicits IL-10 expression in both the intestinal lamina propria and the draining mesenteric lymph node, with higher expression in the infected tissue. In vitro, exogenous IL-10 enhanced Th2 differentiation in isolated CD4+ T cells, increasing expression of GATA3 and production of IL-5 and IL-13. The ability of IL-10 to amplify the Th2 response coincided with its suppression of IFNγ expression and, in vivo, we found that, in intestinal helminth infection, IL-10 receptor expression was higher on Th1 cells in the small intestine than on Th2 cells in the same tissue, or on any Th cell in the draining lymph node. In vivo blockade of IL-10 signalling during helminth infection resulted in an expansion of IFNγ+ and Tbet+ Th1 cells in the small intestine and caused a coincident decrease in IL-13, IL-5 and GATA3 expression by intestinal T cells. Together our data indicate that IL-10 signalling promotes Th2 differentiation during helminth infection at least in part by regulating competing Th1 cells in the infected tissue.

2021 ◽  
Author(s):  
◽  
Ryan Kyle

<p>Type 2 immune responses are generated to provide protection against parasitic helminth infections, however these responses also cause the pathologies associated with allergic inflammation. Studies of the cell types and signalling pathways that mediate Type 2 immune responses have been previously undertaken with the goals of efficient development of vaccines against helminths, and identification of pathways that can be inhibited to decrease the damage caused by allergic inflammation.  The cytokines interleukin-4 (IL-4) and interleukin-13 (IL-13) mediate many of the downstream effector functions of the Type 2 immune response. To study the mechanisms that control expression of these two cytokines I have used a novel dual cytokine IL-4 and IL-13 transgenic reporter mouse. Utilising this tool along with other IL-4 reporter mice I have discovered that the amount of T cell receptor (TCR) signalling modulates the allelic expression of IL-4 by CD4⁺ T cells. The transgenic IL-4 reporter mouse has for the first time allowed independent measurement of the effects of IL-4 deficiency on the expression of IL-4 in vivo. Using this system I have found that IL- 4 is not required for the in vivo generation or expansion of IL-4 producing CD4⁺ T cells. Th2 differentiated CD4⁺ T cells also expresses IL-13, however the dual reporter mice have demonstrated that IL-13 is expressed consistently later than IL-4 in vitro, and IL-13 requires constant, or multiple exposures to TCR stimulus for expression to be induced. IL-13 expression is absent from lymph node CD4⁺ T cells during exposure to allergens or helminth infection. Sequestration of CD4⁺ T cells in the lymph node does not impact the number of IL-13 expressing CD4⁺ T cells in the lung during a helminth infection, indicating that adaptive immune cell derived IL-13 may be entirely produced by lung resident cells not requiring transit through the lymph node.  I have characterised a population of innate lymphoid cells (ILCs) within the skin and found that the proportion of these cells that constitutively express IL-13 decreases with age. These cells did not drastically change in numbers or IL-13 responses in a range of inflammatory conditions including a model of atopic dermatitis. Basophils were found to respond to the atopic dermatitis model by migrating specifically to the treated skin site and draining lymph node, and producing IL-4 in a thymic stromal lymphopoietin dependant manner.  Treatment with exogenous cytokines induced IL-13 expression from group 2 ILCs (ILC2s) in the lung and these cells promoted protective immune responses against Nippostrongylus brasiliensis infection. The immune response generated during a primary infection by Nippostrongylus brasiliensis provides protection from re-infection. Long-term protection is dependent on CD4⁺ T cells but when sufficiently stimulated by cytokine, ILC2s can rescue the protection lost by the depletion of CD4⁺ T cells.  This thesis has shown that CD4⁺ T cells and populations of innate immune cells differentially regulate the expression of the closely related Type 2 cytokines IL-4 and IL- 13. These discoveries will help direct future research aiming to boost the effectiveness of anti-helminth vaccines, or decrease the pathology caused by allergic diseases by targeting specific cytokine expression.</p>


2021 ◽  
Author(s):  
◽  
Ryan Kyle

<p>Type 2 immune responses are generated to provide protection against parasitic helminth infections, however these responses also cause the pathologies associated with allergic inflammation. Studies of the cell types and signalling pathways that mediate Type 2 immune responses have been previously undertaken with the goals of efficient development of vaccines against helminths, and identification of pathways that can be inhibited to decrease the damage caused by allergic inflammation.  The cytokines interleukin-4 (IL-4) and interleukin-13 (IL-13) mediate many of the downstream effector functions of the Type 2 immune response. To study the mechanisms that control expression of these two cytokines I have used a novel dual cytokine IL-4 and IL-13 transgenic reporter mouse. Utilising this tool along with other IL-4 reporter mice I have discovered that the amount of T cell receptor (TCR) signalling modulates the allelic expression of IL-4 by CD4⁺ T cells. The transgenic IL-4 reporter mouse has for the first time allowed independent measurement of the effects of IL-4 deficiency on the expression of IL-4 in vivo. Using this system I have found that IL- 4 is not required for the in vivo generation or expansion of IL-4 producing CD4⁺ T cells. Th2 differentiated CD4⁺ T cells also expresses IL-13, however the dual reporter mice have demonstrated that IL-13 is expressed consistently later than IL-4 in vitro, and IL-13 requires constant, or multiple exposures to TCR stimulus for expression to be induced. IL-13 expression is absent from lymph node CD4⁺ T cells during exposure to allergens or helminth infection. Sequestration of CD4⁺ T cells in the lymph node does not impact the number of IL-13 expressing CD4⁺ T cells in the lung during a helminth infection, indicating that adaptive immune cell derived IL-13 may be entirely produced by lung resident cells not requiring transit through the lymph node.  I have characterised a population of innate lymphoid cells (ILCs) within the skin and found that the proportion of these cells that constitutively express IL-13 decreases with age. These cells did not drastically change in numbers or IL-13 responses in a range of inflammatory conditions including a model of atopic dermatitis. Basophils were found to respond to the atopic dermatitis model by migrating specifically to the treated skin site and draining lymph node, and producing IL-4 in a thymic stromal lymphopoietin dependant manner.  Treatment with exogenous cytokines induced IL-13 expression from group 2 ILCs (ILC2s) in the lung and these cells promoted protective immune responses against Nippostrongylus brasiliensis infection. The immune response generated during a primary infection by Nippostrongylus brasiliensis provides protection from re-infection. Long-term protection is dependent on CD4⁺ T cells but when sufficiently stimulated by cytokine, ILC2s can rescue the protection lost by the depletion of CD4⁺ T cells.  This thesis has shown that CD4⁺ T cells and populations of innate immune cells differentially regulate the expression of the closely related Type 2 cytokines IL-4 and IL- 13. These discoveries will help direct future research aiming to boost the effectiveness of anti-helminth vaccines, or decrease the pathology caused by allergic diseases by targeting specific cytokine expression.</p>


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yuqing Mo ◽  
Ling Ye ◽  
Hui Cai ◽  
Guiping Zhu ◽  
Jian Wang ◽  
...  

Abstract Background Serine peptidase inhibitor, clade B, member 10 (SERPINB10) contributes to allergic inflammation in asthma. However, its role in the T-helper type 2 (Th2) response of allergic asthma is not known. The goal of this study was to unveil the function of SERPINB10 in the Th2 response of allergic asthma and the mechanism by which SERPINB10 affects the viability of Th2 cells. Methods Th2 cytokines and serum levels of house dust mite (HDM)-specific IgE in bronchoalveolar lavage fluid were examined by ELISA in an HDM-induced asthma model. The number and apoptosis of Th1 and Th2 cells in mouse lungs were measured by flow cytometry. Naïve CD4 T cells from patients with asthma were cultured under appropriate polarizing conditions to generate Th1 and Th2 cells. SERPINB10 expression in polarized Th1 and Th2 cells was quantified by real-time reverse transcription-quantitative polymerase chain reaction. SERPINB10 expression was knocked down in human CD4 T cells with lentivirus. Results Knockdown of SERPINB10 expression significantly diminished HDM-induced Th2 cytokine secretion and level of HDM-specific IgE. After HDM exposure, SERPINB10-knockdown mice had diminished numbers of Th2 cells, but similar numbers of Th1 cells, compared with those in negative-control mice. Th2 cells of SERPINB10-knockdown mice were more susceptible to apoptosis than that of control mice. Stimulating T-cell receptors (TCRs) with anti-CD3 antibody caused upregulation of SERPINB10 expression in polarized Th2 cells, but not polarized Th1 cells. Knockdown of SERPINB10 expression resulted in fewer numbers and greater apoptosis of polarized Th2 cells. Conclusion Our results suggest that SERPINB10 may contribute to allergic inflammation and the Th2 response of asthma by inhibiting the apoptosis of Th2 cells.


2006 ◽  
Vol 34 (04) ◽  
pp. 667-684 ◽  
Author(s):  
Chia-Yang Li ◽  
Jau-Ling Suen ◽  
Bor-Luen Chiang ◽  
Pei-Dawn Lee Chao ◽  
Shih-Hua Fang

Our previous studies had reported that morin decreased the interleukin-12 (IL-12) and tumor necrosis factor-alpha (TNF-α) production in lipopolysaccharide (LPS)-activated macrophages, suggesting that morin may promote helper T type 2 (Th2) response in vivo. Dendritic cells (DCs) are the most potent antigen presenting cells and known to play a major role in the differentiation of helper T type 1 (Th1) and Th2 responses. This study aimed to reveal whether morin is able to control the Th differentiation through modulating the maturation and functions of DCs. Bone marrow-derived dendritic cells (BM-DCs) were incubated with various concentrations of morin and their characteristics were studied. The results indicated that morin significantly affects the phenotype and cytokine expression of BM-DCs. Morin reduced the production of IL-12 and TNF-α in BM-DCs, in response to LPS stimulation. In addition, the proliferative response of stimulated alloreactive T cells was significantly decreased by morin in BM-DCs. Furthermore, allogeneic T cells secreted higher IL-4 and lower IFN-γ in response to morin in BM-DCs. In conclusion, these results suggested that morin favors Th2 cell differentiation through modulating the maturation and function of BM-DCs.


Blood ◽  
2014 ◽  
Vol 124 (7) ◽  
pp. 1070-1080 ◽  
Author(s):  
Sonia Guedan ◽  
Xi Chen ◽  
Aviv Madar ◽  
Carmine Carpenito ◽  
Shannon E. McGettigan ◽  
...  

Key Points ICOS-based CARs program bipolar TH17/TH1 cells with augmented effector function and in vivo persistence. The expression of selected CAR endodomains can program T cells for their subsequent differentiation fates and effector functions.


Blood ◽  
2000 ◽  
Vol 95 (4) ◽  
pp. 1167-1174 ◽  
Author(s):  
Francesco Annunziato ◽  
Grazia Galli ◽  
Filomena Nappi ◽  
Lorenzo Cosmi ◽  
Roberto Manetti ◽  
...  

Human T helper (Th) cells (Th1- or Th2-oriented memory T cells as well as Th1- or Th2-polarized naive T cells) were infected in vitro with an R5-tropic HIV-1 strain (BaL) and assessed for their profile of cytokine production, CCR5 receptor expression, and HIV-1 p24 antigen (p24 Ag) production. Higher p24 Ag production was found in CCR5-negative Th2-like memory T cells than in CCR5-positive Th1-like memory T cells. By contrast, p24 Ag production was higher in Th1-polarized activated naive T cells in the first 4 days after infection. However, p24 Ag production in Th1-polarized T cells became comparable or even lower than the production in Th2-polarized populations later in infection or when the cells were infected with HIV-1BaL after secondary stimulation. The higher levels of p24 Ag production by Th1-polarized naive T cells soon after infection reflected a higher virus entry, as assessed by the single round infection assay using the HIV–chloramphenicol acetyl transferase (HIV-CAT) R5-tropic virus that contains the envelope protein of HIV-1 YU2 strain. The limitation of viral spread in the Th1-polarized populations, despite the initial higher level of T-cell entry of R5-tropic strains, was due to the ability of Th1 cells to produce greater amounts of β-chemokines than Th2 cells. In fact, an inverse correlation was observed between Th1-polarized naive T cells and Th1-like memory-activated T cells in regards to p24 Ag production and the release of the following CCR5-binding chemokines: regulated on activation normal T expressed and secreted (RANTES), macrophage inflammatory protein–1 (MIP-1), and MIP-1β. Moreover, infection with the HIV-1BaL strain of Th1-polarized T cells in the presence of a mixture of anti-RANTES, anti–MIP-1, and anti–MIP-1β neutralizing antibodies resulted in a significant increase of HIV-1 expression. These findings suggest that Th1-type responses may favor CD4+ T-cell infection by R5-tropic HIV-1 strains, but HIV-1 spread in Th1 cells is limited by their ability to produce CCR5-binding chemokines.


2002 ◽  
Vol 196 (2) ◽  
pp. 261-267 ◽  
Author(s):  
Megan S. Ford ◽  
Kevin J. Young ◽  
Zhuxu Zhang ◽  
Pamela S. Ohashi ◽  
Li Zhang

Lymphoproliferative (lpr) mice, which lack functional Fas receptor expression and develop autoimmune lymphoproliferative disease, have an accumulation of T cell receptor-αβ+CD4−CD8− (double negative T cells [DNTC]) in the periphery. The function of the accumulating DNTC is not clear. In this study we demonstrate that B6/lpr DNTC can dose dependently kill syngeneic CD8+ and CD4+ T cells from wild-type B6 mice through Fas/Fas ligand interactions in vitro. We also demonstrate that B6/lpr DNTC that are activated and expand in vivo are able to specifically down-regulate allogeneic immune responses mediated by syngeneic Fas+CD4+ and CD8+ T cells in vivo. B6/lpr DNTC that have been preactivated in vivo by infusion of either class I– (bm1) or class II– (bm12) mismatched allogeneic lymphocytes are able to specifically enhance the survival of bm1 or bm12, but not third-party skin allografts when adoptively transferred into naive B6+/+ mice. These findings clearly demonstrate that B6/lpr DNTC have a potent immune regulatory function in vitro and in vivo. They also provide new insights into the mechanisms involved in the development of autoimmune disease in lpr mice.


2008 ◽  
Vol 122 (10) ◽  
pp. 2280-2285 ◽  
Author(s):  
Carolin Lüking ◽  
Konrad Kronenberger ◽  
Bernhard Frankenberger ◽  
Elfriede Nößner ◽  
Martin Röcken ◽  
...  

1993 ◽  
Vol 177 (6) ◽  
pp. 1797-1802 ◽  
Author(s):  
J P Sypek ◽  
C L Chung ◽  
S E Mayor ◽  
J M Subramanyam ◽  
S J Goldman ◽  
...  

Resistance to Leishmania major in mice is associated with the appearance of distinct T helper type 1 (Th1) and Th2 subsets. T cells from lymph nodes draining cutaneous lesions of resistant mice are primarily interferon gamma (IFN-gamma)-producing Th1 cells. In contrast, T cells from susceptible mice are principally Th2 cells that generate interleukin 4 (IL-4). Although existing evidence is supportive of a role for IFN-gamma in the generation of Th1 cells, additional factors may be required for a protective response to be maintained. A potential candidate is IL-12, a heterodimeric cytokine produced by monocytes and B cells that has multiple effects on T and natural killer cell function, including inducing IFN-gamma production. Using an experimental leishmanial model we have observed that daily intraperitoneal administration at the time of parasite challenge of either 0.33 micrograms IL-12 (a consecutive 5 d/wk for 5 wk) or 1.0 micrograms IL-12 per mouse (only a consecutive 5 d) caused a &gt; 75% reduction in parasite burden at the site of infection, in highly susceptible BALB/c mice. Delay of treatment by 1 wk had less of a protective effect. Concomitant with these protective effects was an increase in IFN-gamma and a decrease in IL-4 production, as measured by enzyme-linked immunosorbent assay of supernatants generated from popliteal lymph node cells stimulated with leishmanial antigen in vitro. The reduction in parasite numbers induced by IL-12 therapy was still apparent at 10 wk postinfection. In addition, we observed that the administration of a rabbit anti-recombinant murine IL-12 polyclonal antibody (200 micrograms i.p. every other day for 25 d) at the time of infection to resistant C57Bl/6 mice exacerbated disease. These effects were accompanied by a shift in IFN-gamma production in vitro by antigen-stimulated lymph node cells indicative of a Th2-like response. These findings suggest that IL-12 has an important role in initiating a Th1 response and protective immunity.


Sign in / Sign up

Export Citation Format

Share Document