scholarly journals Spatial and temporal regulation of cytokine expression in Type 2 immune responses

2021 ◽  
Author(s):  
◽  
Ryan Kyle

<p>Type 2 immune responses are generated to provide protection against parasitic helminth infections, however these responses also cause the pathologies associated with allergic inflammation. Studies of the cell types and signalling pathways that mediate Type 2 immune responses have been previously undertaken with the goals of efficient development of vaccines against helminths, and identification of pathways that can be inhibited to decrease the damage caused by allergic inflammation.  The cytokines interleukin-4 (IL-4) and interleukin-13 (IL-13) mediate many of the downstream effector functions of the Type 2 immune response. To study the mechanisms that control expression of these two cytokines I have used a novel dual cytokine IL-4 and IL-13 transgenic reporter mouse. Utilising this tool along with other IL-4 reporter mice I have discovered that the amount of T cell receptor (TCR) signalling modulates the allelic expression of IL-4 by CD4⁺ T cells. The transgenic IL-4 reporter mouse has for the first time allowed independent measurement of the effects of IL-4 deficiency on the expression of IL-4 in vivo. Using this system I have found that IL- 4 is not required for the in vivo generation or expansion of IL-4 producing CD4⁺ T cells. Th2 differentiated CD4⁺ T cells also expresses IL-13, however the dual reporter mice have demonstrated that IL-13 is expressed consistently later than IL-4 in vitro, and IL-13 requires constant, or multiple exposures to TCR stimulus for expression to be induced. IL-13 expression is absent from lymph node CD4⁺ T cells during exposure to allergens or helminth infection. Sequestration of CD4⁺ T cells in the lymph node does not impact the number of IL-13 expressing CD4⁺ T cells in the lung during a helminth infection, indicating that adaptive immune cell derived IL-13 may be entirely produced by lung resident cells not requiring transit through the lymph node.  I have characterised a population of innate lymphoid cells (ILCs) within the skin and found that the proportion of these cells that constitutively express IL-13 decreases with age. These cells did not drastically change in numbers or IL-13 responses in a range of inflammatory conditions including a model of atopic dermatitis. Basophils were found to respond to the atopic dermatitis model by migrating specifically to the treated skin site and draining lymph node, and producing IL-4 in a thymic stromal lymphopoietin dependant manner.  Treatment with exogenous cytokines induced IL-13 expression from group 2 ILCs (ILC2s) in the lung and these cells promoted protective immune responses against Nippostrongylus brasiliensis infection. The immune response generated during a primary infection by Nippostrongylus brasiliensis provides protection from re-infection. Long-term protection is dependent on CD4⁺ T cells but when sufficiently stimulated by cytokine, ILC2s can rescue the protection lost by the depletion of CD4⁺ T cells.  This thesis has shown that CD4⁺ T cells and populations of innate immune cells differentially regulate the expression of the closely related Type 2 cytokines IL-4 and IL- 13. These discoveries will help direct future research aiming to boost the effectiveness of anti-helminth vaccines, or decrease the pathology caused by allergic diseases by targeting specific cytokine expression.</p>

2021 ◽  
Author(s):  
◽  
Ryan Kyle

<p>Type 2 immune responses are generated to provide protection against parasitic helminth infections, however these responses also cause the pathologies associated with allergic inflammation. Studies of the cell types and signalling pathways that mediate Type 2 immune responses have been previously undertaken with the goals of efficient development of vaccines against helminths, and identification of pathways that can be inhibited to decrease the damage caused by allergic inflammation.  The cytokines interleukin-4 (IL-4) and interleukin-13 (IL-13) mediate many of the downstream effector functions of the Type 2 immune response. To study the mechanisms that control expression of these two cytokines I have used a novel dual cytokine IL-4 and IL-13 transgenic reporter mouse. Utilising this tool along with other IL-4 reporter mice I have discovered that the amount of T cell receptor (TCR) signalling modulates the allelic expression of IL-4 by CD4⁺ T cells. The transgenic IL-4 reporter mouse has for the first time allowed independent measurement of the effects of IL-4 deficiency on the expression of IL-4 in vivo. Using this system I have found that IL- 4 is not required for the in vivo generation or expansion of IL-4 producing CD4⁺ T cells. Th2 differentiated CD4⁺ T cells also expresses IL-13, however the dual reporter mice have demonstrated that IL-13 is expressed consistently later than IL-4 in vitro, and IL-13 requires constant, or multiple exposures to TCR stimulus for expression to be induced. IL-13 expression is absent from lymph node CD4⁺ T cells during exposure to allergens or helminth infection. Sequestration of CD4⁺ T cells in the lymph node does not impact the number of IL-13 expressing CD4⁺ T cells in the lung during a helminth infection, indicating that adaptive immune cell derived IL-13 may be entirely produced by lung resident cells not requiring transit through the lymph node.  I have characterised a population of innate lymphoid cells (ILCs) within the skin and found that the proportion of these cells that constitutively express IL-13 decreases with age. These cells did not drastically change in numbers or IL-13 responses in a range of inflammatory conditions including a model of atopic dermatitis. Basophils were found to respond to the atopic dermatitis model by migrating specifically to the treated skin site and draining lymph node, and producing IL-4 in a thymic stromal lymphopoietin dependant manner.  Treatment with exogenous cytokines induced IL-13 expression from group 2 ILCs (ILC2s) in the lung and these cells promoted protective immune responses against Nippostrongylus brasiliensis infection. The immune response generated during a primary infection by Nippostrongylus brasiliensis provides protection from re-infection. Long-term protection is dependent on CD4⁺ T cells but when sufficiently stimulated by cytokine, ILC2s can rescue the protection lost by the depletion of CD4⁺ T cells.  This thesis has shown that CD4⁺ T cells and populations of innate immune cells differentially regulate the expression of the closely related Type 2 cytokines IL-4 and IL- 13. These discoveries will help direct future research aiming to boost the effectiveness of anti-helminth vaccines, or decrease the pathology caused by allergic diseases by targeting specific cytokine expression.</p>


2021 ◽  
Vol 12 ◽  
Author(s):  
Laurence S. C. Lok ◽  
Jennifer A. Walker ◽  
Helen E. Jolin ◽  
Seth T. Scanlon ◽  
Masaru Ishii ◽  
...  

Group 2 innate lymphoid cells (ILC2s) are early effectors of mucosal type 2 immunity, producing cytokines such as interleukin (IL)-13 to mediate responses to helminth infection and allergen-induced inflammation. ILC2s are also present in lymph nodes (LNs) and can express molecules required for antigen presentation, but to date there are limited data on their dynamic behaviour. We used a CD2/IL-13 dual fluorescent reporter mouse for in vivo imaging of ILC2s and Th2 T cells in real time following a type 2 priming helminth infection or egg injection. After helminth challenge, we found that ILC2s were the main source of IL-13 in lymphoid organs (Peyer’s patches and peripheral LNs), and were located in T cell areas. Intravital imaging demonstrated an increase in IL-13+ ILC2 size and movement following helminth infection, but reduced duration of interactions with T cells compared with those in homeostasis. In contrast, in the intestinal mucosa, we observed an increase in ILC2-T cell interactions post-infection, including some of prolonged duration, as well as increased IL-13+ ILC2 movement. These data suggest that ILC2 activation enhances cell motility, with the potential to increase the area of distribution of cytokines to optimise the early generation of type 2 responses. The prolonged ILC2 interactions with T cells within the intestinal mucosa are consistent with the conclusion that contact-based T cell activation may occur within inflamed tissues rather than lymphoid organs. Our findings have important implications for our understanding of the in vivo biology of ILC2s and the way in which these cells facilitate adaptive immune responses.


2021 ◽  
Vol 6 (57) ◽  
pp. eabe3218
Author(s):  
Coco Chu ◽  
Christopher N. Parkhurst ◽  
Wen Zhang ◽  
Lei Zhou ◽  
Hiroshi Yano ◽  
...  

Group 2 innate lymphoid cells (ILC2s) reside in multiple tissues, including lymphoid organs and barrier surfaces, and secrete type 2 cytokines including interleukin-5 (IL-5), IL-9, and IL-13. These cells participate in multiple physiological processes including allergic inflammation, tissue repair, metabolic homeostasis, and host defense against helminth infections. Recent studies indicate that neurotransmitters and neuropeptides can play an important role in regulating ILC2 responses; however, the mechanisms that underlie these processes in vivo remain incompletely defined. Here, we identify that activated ILC2s up-regulate choline acetyltransferase (ChAT)—the enzyme responsible for the biosynthesis of acetylcholine (ACh)—after infection with the helminth parasite Nippostrongylus brasiliensis or treatment with alarmins or cytokines including IL-25, IL-33, and thymic stromal lymphopoietin (TSLP). ILC2s also express acetylcholine receptors (AChRs), and ACh administration promotes ILC2 cytokine production and elicits expulsion of helminth infection. In accordance with this, ChAT deficiency in ILC2s leads to defective ILC2 responses and impaired immunity against helminth infection. Together, these results reveal a previously unrecognized role of the ChAT-ACh pathway in promoting type 2 innate immunity to helminth infection.


1998 ◽  
Vol 6 (3-4) ◽  
pp. 331-342 ◽  
Author(s):  
Christoph Specht ◽  
Hans-Gerd Pauels ◽  
Christian Becker ◽  
Eckehart Kölsch

The involvement of counteractiveCD8+T-cell subsets during tumor-specific immune responses was analyzed in a syngeneic murine plasmacytoma model.CD8+Tc cells against the immunogenic IL-10-producing BALB/c plasmacytoma ADJ-PC-5 can be easily induced by immunization of BALB/c mice with X-irradiated ADJ-PC-5 tumor cellsin vivoandin vitro. However, the failure of recipient mice to mount a protective Tc response against the tumor during early stages of a real or simulated tumor growth is not due to immunological ignorance, but depends on the induction of tumor-specific tolerance, involving a population of tumorinducedCD8+T cells that are able to inhibit the generation of tumor-specific Tc cells in a primary ADJ-PC-5-specific MLTC, using IFN-γas a suppressive factor. Whereas most longterm cultivated CD8+ADJ-PC-5-specific Tc lines produce type-1 cytokines on stimulation, at least two of them, which were derived from a primary MLTC, display a type-2 cytokine spectrum. Furthermore, the primaryin vitroTc response against ADJ-PC-5 cells shows characteristics of a Tc2 response. The Tc response is strictly depending on tumor-derived IL-10.CD8+Tc cells that are induced in a primary MLTC do not produce IFN-γ, and the tumor-specific Tc response is enhanced by IL-4 but suppressed by IFN-γor IL-12. In contrast, ADJ-PC- 5-specificCD8+Tc cells from immunized mice are IFN-γproducing Tc1 cells. Since the primaryin vitroTc response against the tumor is suppressed even by the smallest numbers of irradiated ADJ-PC-5-specific Tc1 cells via IFN-γthese Tc1 cells behave similar to the suppressiveCD8+T cells that are induced during early stages of ADJ-PC-5 tumorigenesis.


Blood ◽  
2012 ◽  
Vol 120 (17) ◽  
pp. 3478-3487 ◽  
Author(s):  
Solenne Vigne ◽  
Gaby Palmer ◽  
Praxedis Martin ◽  
Céline Lamacchia ◽  
Deborah Strebel ◽  
...  

AbstractThe interleukin-1 (IL-1) superfamily of cytokines comprises a set of pivotal mediators of inflammation. Among them, the action of IL-36 cytokines in immune responses has remained elusive. In a recent study, we demonstrated a direct effect of IL-36 on immune cells. Here we show that, among T cells, the IL-36 receptor is predominantly expressed on naive CD4+ T cells and that IL-36 cytokines act directly on naive T cells by enhancing both cell proliferation and IL-2 secretion. IL-36β acts in synergy with IL-12 to promote Th1 polarization and IL-36 signaling is also involved in mediating Th1 immune responses to Bacillus Calmette-Guerin infection in vivo. Our findings point toward a critical function of IL-36 in the priming of Th1 cell responses in vitro, and in adaptive immunity in a model of mycobacterial infection in vivo.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3285-3285
Author(s):  
Suresh Veeramani ◽  
George J. Weiner

Abstract Abstract 3285 Background: The complement system has complex activity that impacts on the immune response in a broad variety of ways. The current study was designed to assess the effect of complement components, specifically C5a, on the immune regulatory cells and on the development of an antigen-specific active immune response. Methods: Myeloid dendritic cells (mDCs), enriched from healthy human peripheral blood mononuclear cells, were pulsed with antigen (tetanus toxoid) and co-cultured with autologous, enriched human CD4+ T cells in the presence of various purified complement components. The percent of CD4+ T-cells that were CD25highFoxp3+ (henceforth referred to as Tregs) was determined. The presence of cytokines in supernatant of mDCs cultured with purified complement proteins was also evaluated. In murine models, the effect of C5a on in vivo induction of Tregs and on the development of immune response to ovalbumin was determined by analyzing anti-ovalbumin antibody. This was done in C5-sufficient (B10-D2-HC1) and C5-deficient (B10-D2-HC0) mice immunized with 100 μg of ovalbumin, and in wild type C57Bl/6 mice immunized with 100 μg of ovalbumin along with either irrelevant rat IgG2a (Ova+Isotype control) or rat anti-mouse C5a antibody (Ova+anti-C5a Ab). Results: In Vitro: In Vivo: Conclusions: Presence of C5a in the immune microenvironment results in increased generation of Treg cells and leads to dampening of antigen-specific immune responses. Absence or depletion of C5a results in a drop in the Tregs and a higher antigen-specific immune response. Ongoing studies are exploring the use of C5a depletion as a novel strategy to overcome the low immunogenicity of vaccines, such as cancer vaccines. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Marion Rolot ◽  
Benjamin G. Dewals

Macrophages are highly plastic innate immune cells that adopt an important diversity of phenotypes in response to environmental cues. Helminth infections induce strong type 2 cell-mediated immune responses, characterized among other things by production of high levels of interleukin- (IL-) 4 and IL-13. Alternative activation of macrophages by IL-4 in vitro was described as an opposite phenotype of classically activated macrophages, but the in vivo reality is much more complex. Their exact activation state as well as the role of these cells and associated molecules in type 2 immune responses remains to be fully understood. We can take advantage of a variety of helminth models available, each of which have their own feature including life cycle, site of infection, or pathological mechanisms influencing macrophage biology. Here, we reviewed the recent advances from the laboratory mouse about macrophage origin, polarization, activation, and effector functions during parasitic helminth infection.


1996 ◽  
Vol 183 (5) ◽  
pp. 2129-2142 ◽  
Author(s):  
P Borrow ◽  
A Tishon ◽  
S Lee ◽  
J Xu ◽  
I S Grewal ◽  
...  

The ligand for CD40 (CD40L) is expressed on the surface of activated CD4+ T cells and its role in T-B cell collaborations and thymus-dependent humoral immunity is well established. Recently, by generating CD40L-knockout mice, we have confirmed its previously described role in humoral immunity and defined another important function of this molecule in the in vivo clonal expansion of antigen-specific CD4+ T cells. Here, we investigated the potential in vivo role of CD40L in antiviral immunity by examining the immune response mounted by CD40L-deficient mice following infection with lymphocytic choriomeningitis virus (LCMV), Pichinde virus, or vesicular stomatitis virus. Humoral immune responses of CD40L-deficient mice to these viruses were severely compromised, although moderate titres of antiviral IgM and some IgG2a were produced by virus-infected CD40L-deficient mice by a CD4+ T cell-independent mechanism. By contrast, CD40L-deficient mice made strong primary CTL responses to all three viruses. Interestingly however, although memory CTL activity was detectable in CD40L-deficient mice two months after infection with LCMV, the memory CTL response was much less efficient than in wild-type mice. Together, the results show that CD40-CD40L interactions are required for strong antiviral humoral immune responses, and reveal a novel role for CD40L in the establishment and/or maintenance of CD8+ CTL memory.


2009 ◽  
Vol 206 (5) ◽  
pp. 991-999 ◽  
Author(s):  
Arielle Glatman Zaretsky ◽  
Justin J. Taylor ◽  
Irah L. King ◽  
Fraser A. Marshall ◽  
Markus Mohrs ◽  
...  

The relationship of T follicular helper (TFH) cells to other T helper (Th) subsets is controversial. We find that after helminth infection, or immunization with helminth antigens, reactive lymphoid organs of 4get IL-4/GFP reporter mice contain populations of IL-4/GFP-expressing CD4+ T cells that display the TFH markers CXCR5, PD-1, and ICOS. These TFH cells express the canonical TFH markers BCL6 and IL-21, but also GATA3, the master regulator of Th2 cell differentiation. Consistent with a relationship between Th2 and TFH cells, IL-4 protein production, reported by expression of huCD2 in IL-4 dual reporter (4get/KN2) mice, was a robust marker of TFH cells in LNs responding to helminth antigens. Moreover, the majority of huCD2/IL-4–producing Th cells were found within B cell follicles, consistent with their definition as TFH cells. TFH cell development after immunization failed to occur in mice lacking B cells or CD154. The relationship of TFH cells to the Th2 lineage was confirmed when TFH cells were found to develop from CXCR5− PD-1− IL-4/GFP+ CD4+ T cells after their transfer into naive mice and antigen challenge in vivo.


Sign in / Sign up

Export Citation Format

Share Document