scholarly journals Oculomotor freezing tracks perception and is immune to decision bias

2021 ◽  
Author(s):  
Alex L White ◽  
James C Moreland ◽  
Martin Rolfs

The appearance of a salient stimulus rapidly inhibits saccadic eye movements. Curiously, this "oculomotor freezing" reflex is triggered only by stimuli that the participant reports seeing (White & Rolfs, 2016). But is oculomotor freezing linked to the participant's sensory experience, or their decision that a stimulus was present? If it were decision-related, oculomotor freezing should become less prevalent when the participant is induced to have a conservative decision criterion and reports seeing a stimulus less often. Here we manipulated decision criterion in two ways: by adjusting monetary payoffs and stimulus probability in a detection task. These bias manipulations greatly affected participants' explicit reports but did not affect the degree to which microsaccades were inhibited by stimulus presence. In addition, the link between oculomotor freezing and explicit reports was stronger when the decision criterion was conservative rather than liberal. The simplest explanation is that conservative reports of stimulus presence are more often based on a strong sensory signal that also inhibits microsaccades. We conclude that the sensory threshold for oculomotor freezing is independent of decision bias. To the extent that conscious experience is also unaffected by such bias, oculomotor freezing provides an involuntary, implicit indication that a stimulus has entered awareness.

2013 ◽  
Vol 13 (9) ◽  
pp. 1343-1343
Author(s):  
S. Spotorno ◽  
A. Montagnini ◽  
L. Madelein ◽  
G. Masson

2021 ◽  
Vol 33 (5) ◽  
pp. 919-932
Author(s):  
Chin-An Wang ◽  
Douglas P. Munoz

Abstract The appearance of a salient stimulus evokes saccadic eye movements and pupil dilation as part of the orienting response. Although the role of the superior colliculus (SC) in saccade and pupil dilation has been established separately, whether and how these responses are coordinated remains unknown. The SC also receives global luminance signals from the retina, but whether global luminance modulates saccade and pupil responses coordinated by the SC remains unknown. Here, we used microstimulation to causally determine how the SC coordinates saccade and pupil responses and whether global luminance modulates these responses by varying stimulation frequency and global luminance in male monkeys. Stimulation frequency modulated saccade and pupil responses, with trial-by-trial correlations between the two responses. Global luminance only modulated pupil, but not saccade, responses. Our results demonstrate an integrated role of the SC on coordinating saccade and pupil responses, characterizing luminance independent modulation in the SC, together elucidating the differentiated pathways underlying this behavior.


2020 ◽  
Author(s):  
Chin-An Wang ◽  
Douglas P. Munoz

AbstractThe appearance of a salient stimulus evokes saccadic eye movements and pupil dilation as part of the orienting response. Although the role of the superior colliculus (SC) in saccade and pupil dilation has been established separately, whether and how these responses are coordinated remains unknown. The SC also receives global luminance signals from the retina, but whether global luminance modulates saccade and pupil responses coordinated by the SC remains unknown. Here, we used microstimulation to causally determine how the SC coordinates saccade and pupil responses, and whether global luminance modulates these responses by varying stimulation frequency and global luminance in male monkeys. Stimulation frequency modulated saccade and pupil responses, with trial-by-trial correlations between the two responses. Global luminance only modulated pupil, but not, saccade responses. Our results demonstrate an integrated role of the SC on coordinating saccade and pupil responses, characterizing luminance independent modulation in the SC, together elucidating the differentiated pathways underlying this behavior.


2013 ◽  
Author(s):  
Sara Spotorno ◽  
Guillaume S. Masson ◽  
Anna Montagnini

2000 ◽  
Vol 132 (1) ◽  
pp. 39-51 ◽  
Author(s):  
Christian Quaia ◽  
Martin Paré ◽  
Robert H. Wurtz ◽  
Lance M. Optican

Author(s):  
Shala Knocton ◽  
Aren Hunter ◽  
Warren Connors ◽  
Lori Dithurbide ◽  
Heather F. Neyedli

Objective To determine how changing and informing a user of the false alarm (FA) rate of an automated target recognition (ATR) system affects the user’s trust in and reliance on the system and their performance during an underwater mine detection task. Background ATR systems are designed to operate using a high sensitivity and a liberal decision criterion to reduce the risk of the ATR system missing a target. A high number of FAs in general may lead to a decrease in operator trust and reliance. Methods Participants viewed sonar images and were asked to identify mines in the images. They performed the task without ATR and with ATR at a lower and higher FA rate. The participants were split into two groups—one informed and one uninformed of the changed FA rate. Trust and/or confidence in detecting mines was measured after each block. Results When not informed of the FA rate, the FA rate had a significant effect on the participants’ response bias. Participants had greater trust in the system and a more consistent response bias when informed of the FA rate. Sensitivity and confidence were not influenced by disclosure of the FA rate but were significantly worse for the high FA rate condition compared with performance without the ATR. Conclusion and application Informing a user of the FA rate of automation may positively influence the level of trust in and reliance on the aid.


Healthcare ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Chong-Bin Tsai ◽  
Wei-Yu Hung ◽  
Wei-Yen Hsu

Optokinetic nystagmus (OKN) is an involuntary eye movement induced by motion of a large proportion of the visual field. It consists of a “slow phase (SP)” with eye movements in the same direction as the movement of the pattern and a “fast phase (FP)” with saccadic eye movements in the opposite direction. Study of OKN can reveal valuable information in ophthalmology, neurology and psychology. However, the current commercially available high-resolution and research-grade eye tracker is usually expensive. Methods & Results: We developed a novel fast and effective system combined with a low-cost eye tracking device to accurately quantitatively measure OKN eye movement. Conclusions: The experimental results indicate that the proposed method achieves fast and promising results in comparisons with several traditional approaches.


Sign in / Sign up

Export Citation Format

Share Document