scholarly journals Adaptivity of fixational saccadic eye movements in a visual detection task

2013 ◽  
Vol 13 (9) ◽  
pp. 1343-1343
Author(s):  
S. Spotorno ◽  
A. Montagnini ◽  
L. Madelein ◽  
G. Masson
2021 ◽  
Author(s):  
Alex L White ◽  
James C Moreland ◽  
Martin Rolfs

The appearance of a salient stimulus rapidly inhibits saccadic eye movements. Curiously, this "oculomotor freezing" reflex is triggered only by stimuli that the participant reports seeing (White & Rolfs, 2016). But is oculomotor freezing linked to the participant's sensory experience, or their decision that a stimulus was present? If it were decision-related, oculomotor freezing should become less prevalent when the participant is induced to have a conservative decision criterion and reports seeing a stimulus less often. Here we manipulated decision criterion in two ways: by adjusting monetary payoffs and stimulus probability in a detection task. These bias manipulations greatly affected participants' explicit reports but did not affect the degree to which microsaccades were inhibited by stimulus presence. In addition, the link between oculomotor freezing and explicit reports was stronger when the decision criterion was conservative rather than liberal. The simplest explanation is that conservative reports of stimulus presence are more often based on a strong sensory signal that also inhibits microsaccades. We conclude that the sensory threshold for oculomotor freezing is independent of decision bias. To the extent that conscious experience is also unaffected by such bias, oculomotor freezing provides an involuntary, implicit indication that a stimulus has entered awareness.


2013 ◽  
Author(s):  
Sara Spotorno ◽  
Guillaume S. Masson ◽  
Anna Montagnini

2000 ◽  
Vol 132 (1) ◽  
pp. 39-51 ◽  
Author(s):  
Christian Quaia ◽  
Martin Paré ◽  
Robert H. Wurtz ◽  
Lance M. Optican

Healthcare ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Chong-Bin Tsai ◽  
Wei-Yu Hung ◽  
Wei-Yen Hsu

Optokinetic nystagmus (OKN) is an involuntary eye movement induced by motion of a large proportion of the visual field. It consists of a “slow phase (SP)” with eye movements in the same direction as the movement of the pattern and a “fast phase (FP)” with saccadic eye movements in the opposite direction. Study of OKN can reveal valuable information in ophthalmology, neurology and psychology. However, the current commercially available high-resolution and research-grade eye tracker is usually expensive. Methods & Results: We developed a novel fast and effective system combined with a low-cost eye tracking device to accurately quantitatively measure OKN eye movement. Conclusions: The experimental results indicate that the proposed method achieves fast and promising results in comparisons with several traditional approaches.


Author(s):  
Christian Wolf ◽  
Markus Lappe

AbstractHumans and other primates are equipped with a foveated visual system. As a consequence, we reorient our fovea to objects and targets in the visual field that are conspicuous or that we consider relevant or worth looking at. These reorientations are achieved by means of saccadic eye movements. Where we saccade to depends on various low-level factors such as a targets’ luminance but also crucially on high-level factors like the expected reward or a targets’ relevance for perception and subsequent behavior. Here, we review recent findings how the control of saccadic eye movements is influenced by higher-level cognitive processes. We first describe the pathways by which cognitive contributions can influence the neural oculomotor circuit. Second, we summarize what saccade parameters reveal about cognitive mechanisms, particularly saccade latencies, saccade kinematics and changes in saccade gain. Finally, we review findings on what renders a saccade target valuable, as reflected in oculomotor behavior. We emphasize that foveal vision of the target after the saccade can constitute an internal reward for the visual system and that this is reflected in oculomotor dynamics that serve to quickly and accurately provide detailed foveal vision of relevant targets in the visual field.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chloé Stengel ◽  
Marine Vernet ◽  
Julià L. Amengual ◽  
Antoni Valero-Cabré

AbstractCorrelational evidence in non-human primates has reported increases of fronto-parietal high-beta (22–30 Hz) synchrony during the top-down allocation of visuo-spatial attention. But may inter-regional synchronization at this specific frequency band provide a causal mechanism by which top-down attentional processes facilitate conscious visual perception? To address this question, we analyzed electroencephalographic (EEG) signals from a group of healthy participants who performed a conscious visual detection task while we delivered brief (4 pulses) rhythmic (30 Hz) or random bursts of Transcranial Magnetic Stimulation (TMS) to the right Frontal Eye Field (FEF) prior to the onset of a lateralized target. We report increases of inter-regional synchronization in the high-beta band (25–35 Hz) between the electrode closest to the stimulated region (the right FEF) and right parietal EEG leads, and increases of local inter-trial coherence within the same frequency band over bilateral parietal EEG contacts, both driven by rhythmic but not random TMS patterns. Such increases were accompained by improvements of conscious visual sensitivity for left visual targets in the rhythmic but not the random TMS condition. These outcomes suggest that high-beta inter-regional synchrony can be modulated non-invasively and that high-beta oscillatory activity across the right dorsal fronto-parietal network may contribute to the facilitation of conscious visual perception. Our work supports future applications of non-invasive brain stimulation to restore impaired visually-guided behaviors by operating on top-down attentional modulatory mechanisms.


Sign in / Sign up

Export Citation Format

Share Document