scholarly journals Insulin Signaling Attenuates GLUT4 Endocytosis in Muscle Cells via GSK3α-Dyn2-Bin1 Interplay

2021 ◽  
Author(s):  
Jessica Laiman ◽  
Julie Loh ◽  
Wei-Chun Tang ◽  
Mei-Chun Chuang ◽  
Bi-Chang Chen ◽  
...  

AbstractInsulin-induced translocation of glucose transporter 4 (GLUT4) to the plasma membrane of skeletal muscle is critical for postprandial glucose uptake; however, whether the internalization of GLUT4 into cells is also regulated by insulin signaling remains unclear. Here, we discover that the activity of dynamin-2 (Dyn2), pivotal GTPase catalyzing GLUT4 internalization, is regulated by insulin signaling in muscle cells. The membrane fission activity of Dyn2 is inhibited in muscle cells through binding with the SH3 domain-containing protein Bin1. Phosphorylation of Serine848 on Dyn2 by GSK3α or the mutations of Bin1-SH3 in patients with centronuclear myopathy, elevate the activity of Dyn2 due to reduced binding affinity toward Bin1. The augmented Dyn2 fission activity in muscle cells leads to GLUT4 internalization and Bin1-tubule vesiculation. Together, our findings reveal a new role of insulin signaling in glucose metabolism and muscle physiology via attenuating Dyn2 activity thus regulating GLUT4 endocytosis in muscle cell.

2010 ◽  
Vol 74 (10) ◽  
pp. 2036-2042 ◽  
Author(s):  
Norio YAMAMOTO ◽  
Manabu UEDA ◽  
Kyuichi KAWABATA ◽  
Takuya SATO ◽  
Kengo KAWASAKI ◽  
...  

2020 ◽  
Vol 13 (2) ◽  
pp. 244-252 ◽  
Author(s):  
Balamuralikrishnan Balasubramanian ◽  
Hak-J. Kim ◽  
Ramzi A. Mothana ◽  
Young O. Kim ◽  
Nasir A. Siddiqui

2011 ◽  
Vol 300 (5) ◽  
pp. H1637-H1644 ◽  
Author(s):  
Yukihiro Ohta ◽  
Shintaro Kinugawa ◽  
Shouji Matsushima ◽  
Taisuke Ono ◽  
Mochamad A. Sobirin ◽  
...  

Insulin resistance has been shown to occur as a consequence of heart failure. However, its exact mechanisms in this setting remain unknown. We have previously reported that oxidative stress is enhanced in the skeletal muscle from mice with heart failure after myocardial infarction (MI) ( 30 ). This study is aimed to investigate whether insulin resistance in postinfarct heart failure is due to the impairment of insulin signaling in the skeletal muscle caused by oxidative stress. Mice were divided into four groups: sham operated (sham); sham treated with apocynin, an inhibitor of NAD(P)H oxidase activation (10 mmol/l in drinking water); MI; and MI treated with apocynin. After 4 wk, intraperitoneal insulin tolerance tests were performed, and skeletal muscle samples were obtained for insulin signaling measurements. MI mice showed left ventricular dilation and dysfunction by echocardiography and increased left ventricular end-diastolic pressure and lung weight. The decrease in glucose level after insulin load significantly attenuated in MI compared with sham. Insulin-stimulated serine phosphorylation of Akt and glucose transporter-4 translocation were decreased in MI mice by 61 and 23%, respectively. Apocynin ameliorated the increase in oxidative stress and NAD(P)H oxidase activities measured by the lucigenin assay in the skeletal muscle after MI. It also improved insulin resistance and inhibited the decrease of Akt phosphorylation and glucose transporter-4 translocation. Insulin resistance was induced by the direct impairment of insulin signaling in the skeletal muscle from postinfarct heart failure, which was associated with the enhanced oxidative stress via NAD(P)H oxidase.


2019 ◽  
Vol 30 (12) ◽  
pp. 1536-1543 ◽  
Author(s):  
Xiang Pan ◽  
Anatoli Meriin ◽  
Guanrong Huang ◽  
Konstantin V. Kandror

In fat and skeletal muscle cells, insulin-responsive amino peptidase (IRAP) along with glucose transporter 4 (Glut4) and sortilin, represents a major component protein of the insulin-responsive vesicles (IRVs). Here, we show that IRAP, similar to Glut4 and sortilin, is retrieved from endosomes to the trans-Golgi network by retromer. Unlike Glut4, retrograde transport of IRAP does not require sortilin, as retromer can directly bind to the cytoplasmic tail of IRAP. Ablation of IRAP in 3T3-L1 adipocytes shifts the endosomal pool of Glut4 to more acidic endosomes, but does not affect IRV targeting, stability, and insulin responsiveness of Glut4.


Sign in / Sign up

Export Citation Format

Share Document