scholarly journals Time to stop; agent-based modelling of chemoaffinity with competition

2021 ◽  
Author(s):  
Sebastian S James ◽  
Stuart P Wilson

In the classic Chemoaffinity theory, the retinotectal axon projection is thought to use pairs of orthogonal signalling gradients in the retina to specify the eventual location of synapses made on the surface of the tectum/superior colliculus. Similar orthogonal gradients in the tectum provide a coordinate system which allows the axons to match their prespecified destination with the correct location. Although the Ephrins have been shown to guide axons toward their destination, there has yet to emerge a complete account of the local interactions which halt the axonal growth cones in the correct locations to recreate the topography of the retinal cells. The model of Simpson and Goodhill (2011) provides an account of the basic topographic arrangement of cells on the tectum, as well as reproducing well known surgical and genetic manipulation experiments. However, it suffers from the absence of a local chemotactic guidance mechanism. Instead, each agent in their model is given instantaneous knowledge of the vector that would move it toward its pre specified destination. In addition to the globally supervised chemoaffinity term, Simpson and Goodhill (2011) introduced a competitive interaction for space between growth cone agents and a receptor-ligand axon-axon interaction in order to account for the full set of experimental manipulations. Here, we propose the replacement of the chemoaffinity term with a gradient following model consisting of axonal growth cone agents which carry receptor molecule expression determined by their soma's location of origin on the retina. Growth cones move on the simulated tectum guided by two pairs of opposing, orthogonal signalling molecules representing the Ephrin ligands. We show that with only the chemoaffinity term and a receptor-ligand based axon-axon interaction term (meaning that all growth cone interactions are by receptor-ligand signalling), a full range of experimental manipulations to the retinotectal system can be reproduced. Furthermore, we show that the observation that competition is not and essential requirement for axons to find their way (Gosse et al., 2008) is also accounted for by the model, due to the opposing influences of signalling gradient pairs. Finally, we demonstrate that, assuming exponentially varying receptor expression in the retina, ligand expression should either be exponential if the receptor-ligand signal induces repulsion (i.e. gradient descent) or logarithmic if the signal induces attraction (gradient ascent). Thus, we find that a model analogous to the one we presented in James et al. (2020) that accounts for murine barrel patterning is also a candidate mechanism for the arrangement of the more continuous retinotectal system.

1998 ◽  
Vol 142 (1) ◽  
pp. 191-202 ◽  
Author(s):  
A. Shibata ◽  
M.V. Wright ◽  
S. David ◽  
L. McKerracher ◽  
P.E. Braun ◽  
...  

During central nervous system development, neurons differentiate distinct axonal and dendritic processes whose outgrowth is influenced by environmental cues. Given the known intrinsic differences between axons and dendrites and that little is known about the response of dendrites to inhibitory cues, we tested the hypothesis that outgrowth of differentiating axons and dendrites of hippocampal neurons is differentially influenced by inhibitory environmental cues. A sensitive growth cone behavior assay was used to assess responses of differentiating axonal and dendritic growth cones to oligodendrocytes and oligodendrocyte- derived, myelin-associated glycoprotein (MAG). We report that >90% of axonal growth cones collapsed after contact with oligodendrocytes. None of the encounters between differentiating, MAP-2 positive dendritic growth cones and oligodendrocytes resulted in growth cone collapse. The insensitivity of differentiating dendritic growth cones appears to be acquired since they develop from minor processes whose growth cones are inhibited (nearly 70% collapse) by contact with oligodendrocytes. Recombinant MAG(rMAG)-coated beads caused collapse of 72% of axonal growth cones but only 29% of differentiating dendritic growth cones. Unlike their response to contact with oligodendrocytes, few growth cones of minor processes were inhibited by rMAG-coated beads (20% collapsed). These results reveal the capability of differentiating growth cones of the same neuron to partition the complex molecular terrain they navigate by generating unique responses to particular inhibitory environmental cues.


2017 ◽  
Author(s):  
Honda Naoki

AbstractNeural circuits are wired by chemotactic migration of growth cones guided by extracellular guidance cue gradients. How growth cone chemotaxis builds the macroscopic structure of the neural circuit is a fundamental question in neuroscience. I addressed this issue in the case of the ordered axonal projections called topographic maps in the retinotectal system. In the retina and tectum, the erythropoietin-producing hepatocellular (Eph) receptors and their ligands, the ephrins, are expressed in gradients. According to Sperry’s chemoaffinity theory, gradients in both the source and target areas enable projecting axons to recognize their proper terminals, but how axons chemotactically decode their destinations is largely unknown. To identify the chemotactic mechanism of topographic mapping, I developed a mathematical model of intracellular signaling in the growth cone that focuses on the growth cone’s unique chemotactic property of being attracted or repelled by the same guidance cues in different biological situations. The model presented mechanism by which the retinal growth cone reaches the correct terminal zone in the tectum through alternating chemotactic response between attraction and repulsion around a preferred concentration. The model also provided a unified understanding of the contrasting relationships between receptor expression levels and preferred ligand concentrations in EphA/ephrinA- and EphB/ephrinB-encoded topographic mappings. Thus, this study redefines the chemoaffinity theory in chemotactic terms.Author SummaryThis study revisited the chemoaffinity theory for topographic mapping in terms of chemotaxis. According to this theory, the axonal growth cone projects to specific targets based on positional information encoded by chemical gradients in both source and target areas. However, the mechanism by which the chemotactic growth cone recognizes its proper terminal site remains elusive. To unravel this mystery, I mathematically modeled a growth cone exhibiting concentration-dependent attraction and repulsion to chemotactic cues. The model identified a novel growth cone guidance mechanism in topographic mapping, highlighting the importance of the growth cone’s unique ability to alternate between attraction and repulsion. Furthermore, an extension of the model provided possible molecular mechanisms for contrasting two types of topographic mappings observed in the retinotectal system.


1990 ◽  
Vol 110 (4) ◽  
pp. 1319-1331 ◽  
Author(s):  
K Goslin ◽  
G Banker

Hippocampal neurons growing in culture initially extend several, short minor processes that have the potential to become either axons or dendrites. The first expression of polarity occurs when one of these minor processes begins to elongate rapidly, becoming the axon. Before axonal outgrowth, the growth-associated protein GAP-43 is distributed equally among the growth cones of the minor processes; it is preferentially concentrated in the axonal growth cone once polarity has been established (Goslin, K., D. Schreyer, J. Skene, and G. Banker. 1990. J. Neurosci. 10:588-602). To determine when the selective segregation of GAP-43 begins, we followed individual cells by video microscopy, fixed them as soon as the axon could be distinguished, and localized GAP-43 by immunofluorescence microscopy. Individual minor processes acquired axonal growth characteristics within a period of 30-60 min, and GAP-43 became selectively concentrated to the growth cones of these processes with an equally rapid time course. We also examined changes in the distribution of GAP-43 after transection of the axon. After an axonal transection that is distant from the soma, neuronal polarity is maintained, and the original axon begins to regrow almost immediately. In such cases, GAP-43 became selectively concentrated in the new axonal growth cone within 12-30 min. In contrast, when the axon is transected close to the soma, polarity is lost; the original axon rarely regrows, and there is a significant delay before a new axon emerges. Under these circumstances, GAP-43 accumulated in the new growth cone much more slowly, suggesting that its ongoing selective routing to the axon had been disrupted by the transection. These results demonstrate that the selective segregation of GAP-43 to the growth cone of a single process is closely correlated with the acquisition of axonal growth characteristics and, hence, with the expression of polarity.


1989 ◽  
Vol 92 (1) ◽  
pp. 93-100 ◽  
Author(s):  
J.W. Fawcett ◽  
J. Rokos ◽  
I. Bakst

We have examined the interactions between axons regenerating from dorsal root ganglia (DRGs) derived from newborn rats and oligodendrocytes cultured by three different techniques. Cultures examined after 2 days have a profuse outgrowth of axons from the DRGs, forming a dense mat on the culture surface. However, the axons avoid growing on oligodendrocytes; axons are seen all around these cells, but do not grow over them. We have also performed time-lapse video studies of the interactions between axonal growth cones and oligodendrocytes. Axons grow normally until their growth cone comes into direct contact with an oligodendrocyte, following which the growth cone remains motile for 30–60 min, but without making any progress over the cell. The growth cone then suddenly collapses, and the axon retracts, leaving a thin strand in contact with the cell. After this a new growth cone is usually elaborated and the process repeated. Oligodendrocytes are therefore inhibitory to axonal growth, and this may partially explain the failure of axons to regenerate in the mammalian central nervous system.


1998 ◽  
Vol 10 (3) ◽  
pp. 521-527 ◽  
Author(s):  
Geoffrey J. Goodhill ◽  
Herwig Baier

Neuronal growth cones, the sensory-motile structures at the tips of developing axons, navigate to their targets over distances that can be many times greater than their diameter. They may accomplish this impressive task by following spatial gradients of axon guidance molecules in their environment (Bonhoeffer & Gierer, 1984; Tessier-Lavigne & Placzek, 1991; Baier & Bonhoeffer, 1994). We calculate the optimal shape of a gradient and the distance over which it can be detected by a growth cone for two competing mechanistic models of axon guidance. The results are surprisingly simple: Regardless of the mechanism, the maximum distance is about 1 cm. Since gradients and growth cones have coevolved, we suggest that the shape of the gradient in situ will predict the mechanism of gradient detection. In addition, we show that the experimentally determined dissociation constants for receptor-ligand complexes implicated in axon guidance are about optimal with respect to maximizing guidance distance. The relevance of these results to the retinotectal system is discussed.


Author(s):  
Xubin Hou ◽  
Motohiro Nozumi ◽  
Harukazu Nakamura ◽  
Michihiro Igarashi ◽  
Sayaka Sugiyama

During brain development, axon outgrowth and its subsequent pathfinding are reliant on a highly motile growth cone located at the tip of the axon. Actin polymerization that is regulated by actin-depolymerizing factors homology (ADF-H) domain-containing family drives the formation of lamellipodia and filopodia at the leading edge of growth cones for axon guidance. However, the precise localization and function of ADF-H domain-containing proteins involved in axon extension and retraction remain unclear. We have previously shown that transcripts and proteins of coactosin-like protein 1 (COTL1), an ADF-H domain-containing protein, are observed in neurites and axons in chick embryos. Coactosin overexpression analysis revealed that this protein was localized to axonal growth cones and involved in axon extension in the midbrain. We further examined the specific distribution of coactosin and cofilin within the growth cone using superresolution microscopy, structured illumination microscopy, which overcomes the optical diffraction limitation and is suitable to the analysis of cellular dynamic movements. We found that coactosin was tightly associated with F-actin bundles at the growth cones and that coactosin overexpression promoted the expansion of lamellipodia and extension of growth cones. Coactosin knockdown in oculomotor neurons resulted in an increase in the levels of the inactive, phosphorylated form of cofilin and dysregulation of actin polymerization and axonal elongation, which suggests that coactosin promoted axonal growth in a cofilin-dependent manner. Indeed, the application of a dominant-negative form of LIMK1, a downstream effector of GTPases, reversed the effect of coactosin knockdown on axonal growth by enhancing cofilin activity. Combined, our results indicate that coactosin functions promote the assembly of protrusive actin filament arrays at the leading edge for growth cone motility.


2015 ◽  
Vol 10 (1) ◽  
pp. 3 ◽  
Author(s):  
Michael Piper ◽  
Aih Lee ◽  
Francisca van Horck ◽  
Heather McNeilly ◽  
Trina Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document