scholarly journals eIF6 rebinding dynamically couples ribosome maturation and translation

2021 ◽  
Author(s):  
Pekka Jaako ◽  
Alexandre Faille ◽  
Shengjiang Tan ◽  
Chi C Wong ◽  
Norberto Escudero-Urquijo ◽  
...  

Protein synthesis is a cyclical process consisting of translation initiation, elongation, termination and ribosome recycling. The release factors SBDS and EFL1 (both mutated in the leukaemia predisposition disorder Shwachman-Diamond syndrome) license entry of nascent 60S ribosomal subunits into active translation by evicting the anti-association factor eIF6 from the 60S intersubunit face. Here, we show that in mammalian cells, eIF6 holds all free cytoplasmic 60S subunits in a translationally inactive state and that SBDS and EFL1 are the minimal components required to recycle these 60S subunits back into additional rounds of translation by evicting eIF6. Increasing the dose of eIF6 in mice in vivo impairs terminal erythropoiesis by sequestering post-termination 60S subunits in the cytoplasm, disrupting subunit joining and attenuating global protein synthesis. Our data reveal that ribosome maturation and recycling are dynamically coupled by a mechanism that is disrupted in an inherited leukaemia predisposition disorder.

Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 876-876
Author(s):  
Pekka Jaako ◽  
Chi C Wong ◽  
David Adams ◽  
Alan J. Warren

Abstract Shwachman-Diamond syndrome (SDS) is an autosomal recessive disorder characterized by bone marrow failure and a striking propensity to develop poor prognosis myelodysplastic syndrome and acute myeloid leukemia. In 90 % of cases the disease is caused by biallelic mutations in the gene encoding SBDS. We have shown previously that SBDS is a cytoplasmic ribosome assembly factor that catalyzes the release of the eukaryotic initiation factor 6 (eIF6) from the subunit joining interface of 60S ribosomal subunit (Menne et al, 2007; Finch et al, 2011). Deficiency of SBDS therefore results in aberrant retention of eIF6 on the 60S subunits that in turn perturbs ribosomal subunit joining and the formation of translation-competent 80S ribosomes. However, the mechanism linking defective ribosome assembly to marrow failure and leukemia in SDS remain poorly understood. Lack of viable mouse models presents a barrier to progress in understanding SDS disease pathophysiology and to evaluate novel therapies. We hypothesized that induced overexpression of eIF6 would mimic the consequences of SBDS deficiency by reducing the cytoplasmic pool of free 60S subunits and impairing translation. To test this hypothesis we have generated a novel transgenic eIF6 mouse model for SDS using KH2 embryonic stem cells that constitutively express the M2-reverse tetracycline transactivator at the Rosa26 locus with the EIF6 gene targeted downstream of the Col1a1 locus. This strategy permits systemic doxycycline-inducible and graded overexpression of eIF6 through control of the transgene copy number. We have validated that eIF6 overexpression promotes an increase in eIF6-bound cytoplasmic 60S subunits with a concomitant reduction in 80S ribosomes and polysomes in c-kit+ hematopoietic progenitor cells isolated from the transgenic eIF6 mice, thereby recapitulating the ribosomal subunit joining defect observed in patients with SDS. In vitro, the hematopoietic progenitor cells exhibit a strict eIF6 dose-dependent expansion defect. In vivo, mice with graded eIF6 overexpression are viable but develop macrocytic anemia with reticulocytopenia, thrombocytosis and mild leukopenia. Bone marrow transfer experiments demonstrate that the phenotype is autonomous to the hematopoietic system. Longitudinal phenotypic analyses in primary and transplanted animals are ongoing. Flow cytometric analysis of the bone marrow from transgenic eIF6 mice reveals a significant increase in the frequencies of preCFU-E and CFU-E erythroid progenitor cells and erythroblasts, but a significant reduction in the frequency of reticulocytes. Furthermore, we observe a striking accumulation of abnormal orthochromatic erythroblast-like cells that appear to have failed to enucleate, comprising approximately 1.5 % of the total bone marrow cells. Amnis ImageStream analysis, which combines flow cytometry with fluorescent microscopy, reveals a significant decrease in the frequency of erythroblasts that are able to complete the enucleation process. To address the underlying mechanism, we hypothesized that by impairing the formation of translation-competent 80S ribosomes, eIF6 overexpression would reduce the global rate of protein synthesis. Indeed, O-propargyl-puromycin incorporation assays established that the erythroblasts from the transgenic eIF6 mice have an approximately 3-fold reduction in global protein synthesis rate. Furthermore, our preliminary data suggest that the erythroid phenotype is p53-independent. Finally, erythroblasts from the transgenic eIF6 mice show a significant increase in levels of reactive oxygen species, but the functional significance of this finding remains unclear. We conclude that reduced rates of global translation drive defective hematopoiesis in the transgenic eIF6 mice. Importantly, eIF6 overexpression in vivo phenocopies SBDS depletion in human CD34+ cells (Sen et al, 2011). Together with the recent discovery of DNAJC21 (the human homologue of the 60S ribosomal assembly factor JJJ1 in yeast) as an SDS disease gene, our data support the hypothesis that deregulated cytoplasmic 60S subunit maturation and reduced translation are the primary drivers of the hematopoietic defect in SDS. Our viable transgenic eIF6 mouse model provides a unique tool to further dissect the mechanisms that underlie bone marrow failure and malignant transformation in SDS and for the development of novel therapeutics. Disclosures No relevant conflicts of interest to declare.


Genetics ◽  
1979 ◽  
Vol 91 (2) ◽  
pp. 215-227
Author(s):  
W Scott Champney

ABSTRACT Two variations of the method of localized mutagenesis were used to introduce mutations into the 72 min region of the Escherichia coli chromosome. Twenty temperature-sensitive mutants, with linkage to markers in this region, have been examined. Each strain showed an inhibition of growth in liquid medium at 44°, and 19 of the mutants lost viability upon prolonged incubation at this temperature. A reduction in the rate of in vivo RNA and protein synthesis was observed for each mutant at 44°, relative to a control strain. Eleven of the mutants were altered in growth sensitivity or resistance to one or more of three ribosomal antibiotics. The incomplete assembly of ribosomal subunits was detected in nine strains grown at 44°. The characteristics of these mutants suggest that many of them are altered in genes for translational or transcriptional components, consistent with the clustering of these genes at this chromosomal locus.


1992 ◽  
Vol 262 (2) ◽  
pp. C445-C452 ◽  
Author(s):  
T. C. Vary ◽  
S. R. Kimball

The regulation of protein synthesis was determined in livers from control, sterile inflammatory, and septic animals. Total liver protein was increased in both sterile inflammation and sepsis. The rate of protein synthesis in vivo was measured by the incorporation of [3H]phenylalanine into liver proteins in a chronic (5 day) intra-abdominal abscess model. Both sterile inflammation and sepsis increased total hepatic protein synthesis approximately twofold. Perfused liver studies demonstrated that the increased protein synthesis rate in vivo resulted from a stimulation in the synthesis of both secreted and nonsecreted proteins. The total hepatic RNA content was increased 40% only in sterile inflammation, whereas the translational efficiency was increased twofold only in sepsis. The increase in translational efficiency was accompanied by decreases in the amount of free 40S and 60S ribosomal subunits in sepsis. Rates of peptide-chain elongation in vivo were increased 40% in both sterile inflammation and sepsis. These results demonstrate that sepsis induces changes in the regulation of hepatic protein synthesis that are independent of the general inflammatory response. In sterile inflammation, the increase in protein synthesis occurs by a combination of increased capacity and translational efficiency, while in sepsis, the mechanism responsible for accelerated protein synthesis is an increased translational efficiency.


2007 ◽  
Vol 27 (6) ◽  
pp. 2384-2397 ◽  
Author(s):  
Jeanne M. Fringer ◽  
Michael G. Acker ◽  
Christie A. Fekete ◽  
Jon R. Lorsch ◽  
Thomas E. Dever

ABSTRACT The translation initiation GTPase eukaryotic translation initiation factor 5B (eIF5B) binds to the factor eIF1A and catalyzes ribosomal subunit joining in vitro. We show that rapid depletion of eIF5B in Saccharomyces cerevisiae results in the accumulation of eIF1A and mRNA on 40S subunits in vivo, consistent with a defect in subunit joining. Substituting Ala for the last five residues in eIF1A (eIF1A-5A) impairs eIF5B binding to eIF1A in cell extracts and to 40S complexes in vivo. Consistently, overexpression of eIF5B suppresses the growth and translation initiation defects in yeast expressing eIF1A-5A, indicating that eIF1A helps recruit eIF5B to the 40S subunit prior to subunit joining. The GTPase-deficient eIF5B-T439A mutant accumulated on 80S complexes in vivo and was retained along with eIF1A on 80S complexes formed in vitro. Likewise, eIF5B and eIF1A remained associated with 80S complexes formed in the presence of nonhydrolyzable GDPNP, whereas these factors were released from the 80S complexes in assays containing GTP. We propose that eIF1A facilitates the binding of eIF5B to the 40S subunit to promote subunit joining. Following 80S complex formation, GTP hydrolysis by eIF5B enables the release of both eIF5B and eIF1A, and the ribosome enters the elongation phase of protein synthesis.


2020 ◽  
Vol 117 (27) ◽  
pp. 15565-15572 ◽  
Author(s):  
Simon Diez ◽  
Jaewook Ryu ◽  
Kelvin Caban ◽  
Ruben L. Gonzalez ◽  
Jonathan Dworkin

Many bacteria exist in a state of metabolic quiescence where energy consumption must be minimized so as to maximize available resources over a potentially extended period of time. As protein synthesis is the most energy intensive metabolic process in a bacterial cell, it would be an appropriate target for down-regulation during the transition from growth to quiescence. We observe that whenBacillus subtilisexits rapid growth, a subpopulation of cells emerges with very low protein synthetic activity. This phenotypic heterogeneity requires the production of the nucleotides (p)ppGpp, which we show are sufficient to inhibit protein synthesis in vivo. We then show that one of these molecules, ppGpp, inhibits protein synthesis by preventing the allosteric activation of the essential GTPase Initiation Factor 2 (IF2) during translation initiation. Finally, we demonstrate that the observed attenuation of protein synthesis during the entry into quiescence is a consequence of the direct interaction of (p)ppGpp and IF2.


1972 ◽  
Vol 54 (1) ◽  
pp. 56-74 ◽  
Author(s):  
Paul M. Lizardi ◽  
David J. L. Luck

The intracellular site of synthesis of mitochondrial ribosomal proteins (MRP) in Neurospora crassa has been investigated using three complementary approaches. (a) Mitochondrial protein synthesis in vitro: Tritium-labeled proteins made by isolated mitochondria were compared to 14C-labeled marker MRP by cofractionation in a two-step procedure involving isoelectric focusing and polyacrylamide gel electrophoresis. Examination of the electrophoretic profiles showed that essentially none of the peaks of in vitro product corresponded exactly to any of the MRP marker peaks. (b) Sensitivity of in vivo MRP synthesis to chloramphenicol: Cells were labeled with leucine-3H in the presence of chloramphenicol, mitochondrial ribosomal subunits were subsequently isolated, and their proteins fractionated by isoelectric focusing followed by gel electrophoresis. The labeling of every single MRP was found to be insensitive to chloramphenicol, a selective inhibitor of mitochondrial protein synthesis. (c) Sensitivity of in vivo MRP synthesis to anisomycin: We have found this antibiotic to be a good selective inhibitor of cytoplasmic protein synthesis in Neurospora. In the presence of anisomycin the labeling of virtually all MRP is inhibited to the same extent as the labeling of cytoplasmic ribosomal proteins. On the basis of these three types of studies we conclude that most if not all 53 structural proteins of mitochondrial ribosomal subunits in Neurospora are synthesized by cytoplasmic ribosomes.


1986 ◽  
Vol 64 (9) ◽  
pp. 1916-1927 ◽  
Author(s):  
Andrew Greenland ◽  
Michael Shaw

The effects of infection by stem-rust fungus on polyribosomal RNA fractions and protein synthesis in vitro and in vivo in near-isogenic resistant (Sr6) and susceptible (sr6) lines of wheat were determined. In infected resistant leaves the proportion of ribosomes present as polyribosomes was greater than that in healthy (uninfected) leaves at 1, 3, and 6 days and that in susceptible leaves at 1 and 3 days after inoculation. In the latter there were large increases in the pelletable RNA content (ribosomes, ribosomal subunits, and polyribosomes) and proportion of ribosomes present as polyribosomes from day 6. In vitro translation failed to detect any marked differences in polyribosomal translation products in resistant and susceptible leaves in response to infection. Labelling of polypeptides in vivo and separation by one- and two-dimensional electrophoresis showed that at 1 day after inoculation, two groups of high molecular mass polypeptides (80–96 and 100–110 kDa) were more heavily labelled and two novel polypeptides were present in resistant and susceptible leaves in response to infection. Synthesis of the high molecular weight and two novel polypeptides was maintained in infected resistant leaves up to 6 days after inoculation. In susceptible leaves the amount of radiolabel incorporated into these polypeptides and several proteins prominently labelled in uninfected controls declined rapidly from 3 days after inoculation.


2009 ◽  
Vol 29 (10) ◽  
pp. 2899-2912 ◽  
Author(s):  
Mithu Majumder ◽  
Ibrahim Yaman ◽  
Francesca Gaccioli ◽  
Vladimir V. Zeenko ◽  
Chuanping Wang ◽  
...  

ABSTRACT The response to amino acid starvation involves the global decrease of protein synthesis and an increase in the translation of some mRNAs that contain an internal ribosome entry site (IRES). It was previously shown that translation of the mRNA for the arginine/lysine amino acid transporter Cat-1 increases during amino acid starvation via a mechanism that utilizes an IRES in the 5′ untranslated region of the Cat-1 mRNA. It is shown here that polypyrimidine tract binding protein (PTB) and an hnRNA binding protein, heterogeneous nuclear ribonucleoprotein L (hnRNP L), promote the efficient translation of Cat-1 mRNA during amino acid starvation. Association of both proteins with Cat-1 mRNA increased during starvation with kinetics that paralleled that of IRES activation, although the levels and subcellular distribution of the proteins were unchanged. The sequence CUUUCU within the Cat-1 IRES was important for PTB binding and for the induction of translation during amino acid starvation. Binding of hnRNP L to the IRES or the Cat-1 mRNA in vivo was independent of PTB binding but was not sufficient to increase IRES activity or Cat-1 mRNA translation during amino acid starvation. In contrast, binding of PTB to the Cat-1 mRNA in vivo required hnRNP L. A wider role of hnRNP L in mRNA translation was suggested by the decrease of global protein synthesis in cells with reduced hnRNP L levels. It is proposed that PTB and hnRNP L are positive regulators of Cat-1 mRNA translation via the IRES under stress conditions that cause a global decrease of protein synthesis.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4168-4168
Author(s):  
Patrick Hagner ◽  
Krystyna Mazan-Mamczarz ◽  
Sharon Corl ◽  
Ron B. Gartenhaus

Abstract Background: Gene expression is controlled at multiple levels. Translation initiation is a critical checkpoint for regulating levels of protein synthesis. The MCT-1 (Multiple copies in T-cell lymphoma 1) oncogene product has been shown to bind to the cap complex through its PUA domain and recruit DENR, a SUI1 motif containing protein that can increase translation initiation of target mRNAs by scanning and recognition of the initiation codon. An important function of MCT-1 is its modulation of a subset of cancer related mRNAs in human tumors. Levels of MCT-1 protein are increased in a number of non-Hodgkin’s lymphoma cell lines and diffuse large B-cell lymphoma. The abnormal regulation of protein synthesis in lymphoma cells has the potential to be exploited for cancer therapy. We have shown that an MCT-1 deletion mutant, containing only the PUA domain interacts with the cap-complex but does not promote translation. We hypothesized that a PUA-domain mutant acting as dominant-negative would interfere with MCT-1 function through translational repression and modify the malignant phenotype. Method: Using a retroviral vector we established stable Jurkat cell lines expressing either PUA (Jurkat-PUA) or empty vector (Jurkat-V) in order to investigate the feasibility of targeting MCT-1 using a dominant-negative approach and its impact on the transformed phenotype. Multiple clones were plated in soft agar to determine anchorage-independent growth capacity. We also examined growth under reduced serum conditions to evaluate growth kinetics under stress conditions. Jurkat cell lines expressing either PUA or empty vector were exposed to either doxorubicin or gamma-irradiation and cell viability was assessed using both trypan blue exclusion and TUNEL assay. Effects on translation were assayed employing a combination of Western blotting and in-vivo translation assays. Results: There was a greater than three-fold difference in colony formation comparing Jurkat-V with Jurkat-PUA cells. Under serum deprivation conditions Jurkat-PUA grew much slower than Jurkat-V, and cell cycle analysis demonstrated Jurkat-PUA clones progressing through the cell cycle significantly slower than Jurkat-V clones. Sensitivity to both doxorubicin and gamma-radiation was increased at least 2-fold in cells expressing the PUA deletion mutant. Quantitative real-time PCR performed in Jurkat-V and Jurkat-PUA cells demonstrated equivalent levels of selected target mRNAs including Dp-1 and Cyclin D1 however, there were lower protein levels in the Jurkat-PUA clones. Finally, Jurkat-PUA cells displayed reduced in-vivo translation. Conclusion: We have shown that Jurkat cells retrovirally transduced with a dominant-negative MCT-1 mutant can interfere with protein synthesis and modify the malignant phenotype of a highly aggressive lymphoma. As proof of principle, we have established the utility of targeting MCT-1 and the translation initiation complex in lymphoma cells as a potentially useful therapeutic approach.


2014 ◽  
Vol 460 (1) ◽  
pp. 91-101 ◽  
Author(s):  
Lucía Echevarría ◽  
Paula Clemente ◽  
Rosana Hernández-Sierra ◽  
María Esther Gallardo ◽  
Miguel A. Fernández-Moreno ◽  
...  

We have demonstrated that in mitochondria of mammalian cells the aminoacylation of tRNAGln is produced by an indirect pathway involving the enzyme glutamyl-tRNAGln amidotransferase. Misaminoacylated Glu-tRNAGln is rejected from the ribosomes maintaining the fidelity of the mitochondrial protein synthesis.


Sign in / Sign up

Export Citation Format

Share Document