global protein synthesis
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 47)

H-INDEX

20
(FIVE YEARS 3)

PLoS Genetics ◽  
2021 ◽  
Vol 17 (12) ◽  
pp. e1009958
Author(s):  
Naotaka Ochi ◽  
Mai Nakamura ◽  
Rina Nagata ◽  
Naoki Wakasa ◽  
Ryosuke Nakano ◽  
...  

Cell competition is a context-dependent cell elimination via cell-cell interaction whereby unfit cells (‘losers’) are eliminated from the tissue when confronted with fitter cells (‘winners’). Despite extensive studies, the mechanism that drives loser’s death and its physiological triggers remained elusive. Here, through a genetic screen in Drosophila, we find that endoplasmic reticulum (ER) stress causes cell competition. Mechanistically, ER stress upregulates the bZIP transcription factor Xrp1, which promotes phosphorylation of the eukaryotic translation initiation factor eIF2α via the kinase PERK, leading to cell elimination. Surprisingly, our genetic data show that different cell competition triggers such as ribosomal protein mutations or RNA helicase Hel25E mutations converge on upregulation of Xrp1, which leads to phosphorylation of eIF2α and thus causes reduction in global protein synthesis and apoptosis when confronted with wild-type cells. These findings not only uncover a core pathway of cell competition but also open the way to understanding the physiological triggers of cell competition.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Ting Zhu ◽  
Xueli Jiang ◽  
Hangkuo Xin ◽  
Xiaohui Zheng ◽  
Xiaonuan Xue ◽  
...  

AbstractViruses have evolved multiple strategies to manipulate their host’s translational machinery for the synthesis of viral proteins. A common viral target is the alpha subunit of eukaryotic initiation factor 2 (eIF2α). In this study, we show that global protein synthesis was increased but the eIF2α phosphorylation level was markedly decreased in porcine kidney 15 (PK15) cells infected with pseudorabies virus (PRV), a swine herpesvirus. An increase in the eIF2α phosphorylation level by salubrinal treatment or transfection of constructs expressing wild-type eIF2α or an eIF2α phosphomimetic [eIF2α(S51D)] attenuated global protein synthesis and suppressed PRV replication. To explore the mechanism involved in the inhibition of eIF2α phosphorylation during PRV infection, we examined the phosphorylation status of protein kinase R-like endoplasmic reticulum kinase (PERK) and double-stranded RNA-dependent protein kinase R (PKR), two kinases that regulate eIF2α phosphorylation during infection with numerous viruses. We found that the level of neither phosphorylated (p)-PERK nor p-PKR was altered in PRV-infected cells or the lungs of infected mice. However, the expression of growth arrest and DNA damage-inducible protein 34 (GADD34), which promotes eIF2α dephosphorylation by recruiting protein phosphatase 1 (PP1), was significantly induced both in vivo and in vitro. Knockdown of GADD34 and inhibition of PP1 activity by okadaic acid treatment led to increased eIF2α phosphorylation but significantly suppressed global protein synthesis and inhibited PRV replication. Collectively, these results demonstrated that PRV induces GADD34 expression to promote eIF2α dephosphorylation, thereby maintaining de novo protein synthesis and facilitating viral replication.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Namratha Sheshadri ◽  
Dipak K. Poria ◽  
Shikha Sharan ◽  
Ying Hu ◽  
Chunhua Yan ◽  
...  

AbstractCancer cells experience endoplasmic reticulum (ER) stress due to activated oncogenes and conditions of nutrient deprivation and hypoxia. The ensuing unfolded protein response (UPR) is executed by ATF6, IRE1 and PERK pathways. Adaptation to mild ER stress promotes tumor cell survival and aggressiveness. Unmitigated ER stress, however, will result in cell death and is a potential avenue for cancer therapies. Because of this yin-yang nature of ER stress, it is imperative that we fully understand the mechanisms and dynamics of the UPR and its contribution to the complexity of tumor biology. The PERK pathway inhibits global protein synthesis while allowing translation of specific mRNAs, such as the ATF4 transcription factor. Using thapsigargin and tunicamycin to induce acute ER stress, we identified the transcription factor C/EBPδ (CEBPD) as a mediator of PERK signaling to secretion of tumor promoting chemokines. In melanoma and breast cancer cell lines, PERK mediated early induction of C/EBPδ through ATF4-independent pathways that involved at least in part Janus kinases and the STAT3 transcription factor. Transcriptional profiling revealed that C/EBPδ contributed to 20% of thapsigargin response genes including chaperones, components of ER-associated degradation, and apoptosis inhibitors. In addition, C/EBPδ supported the expression of the chemokines CXCL8 (IL-8) and CCL20, which are known for their tumor promoting and immunosuppressive properties. With a paradigm of short-term exposure to thapsigargin, which was sufficient to trigger prolonged activation of the UPR in cancer cells, we found that conditioned media from such cells induced cytokine expression in myeloid cells. In addition, activation of the CXCL8 receptor CXCR1 during thapsigargin exposure supported subsequent sphere formation by cancer cells. Taken together, these investigations elucidated a novel mechanism of ER stress-induced transmissible signals in tumor cells that may be particularly relevant in the context of pharmacological interventions.


2021 ◽  
Author(s):  
Thom M Molenaar ◽  
Eliza Mari Kwesi-Maliepaard ◽  
Joana Silva ◽  
Muddassir Malik ◽  
William J Faller ◽  
...  

Cell size varies between cell types but is tightly regulated by cell-intrinsic and extrinsic mechanisms. Cell-size control is important for cell function and changes in cell size are frequently observed in cancer cells. Here we uncover a non-canonical role of SETD2 in regulating cell size. SETD2 is a lysine methyltransferase and a tumor suppressor protein involved in transcription regulation, RNA processing and DNA repair. At the molecular level, SETD2 is best known for associating with RNA polymerase II through its Set2-Rbp1 interacting (SRI) domain and methylating histone H3 on lysine 36 (H3K36) during transcription. Although most of the cellular functions of SETD2 have been linked to this activity, several non-histone substrates of SETD2 have recently been identified, some of which have been linked to novel functions of SETD2 beyond chromatin regulation. Using multiple, independent perturbation strategies we identify SETD2 as a negative regulator of global protein synthesis rates and cell size. We provide evidence that this function is dependent on the catalytic activity of SETD2 but independent of H3K36 methylation. Paradoxically, ectopic overexpression of a decoy SRI domain also increased cell size, suggesting that the relevant substrate is engaged by SETD2 via its SRI domain. These data add a central role of SETD2 in regulating cellular physiology and warrant further studies on separating the different functions of SETD2 in cancer development.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1121
Author(s):  
Magnus E. Jakobsson

METTL13 (also known as eEF1A-KNMT and FEAT) is a dual methyltransferase reported to target the N-terminus and Lys55 in the eukaryotic translation elongation factor 1 alpha (eEF1A). METTL13-mediated methylation of eEF1A has functional consequences related to translation dynamics and include altered rate of global protein synthesis and translation of specific codons. Aberrant regulation of METTL13 has been linked to several types of cancer but the precise mechanisms are not yet fully understood. In this article, the current literature related to the structure, activity, and function of METTL13 is systematically reviewed and put into context. The links between METTL13 and diseases, mainly different types of cancer, are also summarized. Finally, key challenges and opportunities for METTL13 research are pinpointed in a prospective outlook.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4957
Author(s):  
Mounira Chalabi-Dchar ◽  
Elisabeth Cruz ◽  
Hichem C. Mertani ◽  
Jean-Jacques Diaz ◽  
José Courty ◽  
...  

We previously showed that N6L, a pseudopeptide that targets nucleolin, impairs pancreatic ductal adenocarcinoma (PDAC) growth and normalizes tumor vessels in animal models. In this study, we analyzed the translatome of PDAC cells treated with N6L to identify the pathways that were either repressed or activated. We observed a strong decrease in global protein synthesis. However, about 6% of the mRNAs were enriched in the polysomes. We identified a 5′TOP motif in many of these mRNAs and demonstrated that a chimeric RNA bearing a 5‘TOP motif was up-regulated by N6L. We demonstrated that N6L activates the mTOR pathway, which is required for the translation of these mRNAs. An inhibitory synergistic effect in PDAC cell lines, including patient-derived xenografts and tumor-derived organoids, was observed when N6L was combined with mTOR inhibitors. In conclusion, N6L reduces pancreatic cells proliferation, which then undergoes translational reprogramming through activation of the mTOR pathway. N6L and mTOR inhibitors act synergistically to inhibit the proliferation of PDAC and human PDX cell lines. This combotherapy of N6L and mTOR inhibitors could constitute a promising alternative to treat pancreatic cancer.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1519
Author(s):  
Laura Morant ◽  
Maria-Luise Erfurth ◽  
Albena Jordanova

Aminoacyl-tRNA synthetases (aaRS) represent the largest cluster of proteins implicated in Charcot–Marie–Tooth neuropathy (CMT), the most common neuromuscular disorder. Dominant mutations in six aaRS cause different axonal CMT subtypes with common clinical characteristics, including progressive distal muscle weakness and wasting, impaired sensory modalities, gait problems and skeletal deformities. These clinical manifestations are caused by “dying back” axonal degeneration of the longest peripheral sensory and motor neurons. Surprisingly, loss of aminoacylation activity is not a prerequisite for CMT to occur, suggesting a gain-of-function disease mechanism. Here, we present the Drosophila melanogaster disease models that have been developed to understand the molecular pathway(s) underlying GARS1- and YARS1-associated CMT etiology. Expression of dominant CMT mutations in these aaRSs induced comparable neurodegenerative phenotypes, both in larvae and adult animals. Interestingly, recent data suggests that shared molecular pathways, such as dysregulation of global protein synthesis, might play a role in disease pathology. In addition, it has been demonstrated that the important function of nuclear YARS1 in transcriptional regulation and the binding properties of mutant GARS1 are also conserved and can be studied in D. melanogaster in the context of CMT. Taken together, the fly has emerged as a faithful companion model for cellular and molecular studies of aaRS-CMT that also enables in vivo investigation of candidate CMT drugs.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Matthew J. Kling ◽  
Connor N. Griggs ◽  
Erin M. McIntyre ◽  
Gracey Alexander ◽  
Sutapa Ray ◽  
...  

Abstract Background Neuroblastoma (NB) patients with MYCN amplification or overexpression respond poorly to current therapies and exhibit extremely poor clinical outcomes. PI3K-mTOR signaling-driven deregulation of protein synthesis is very common in NB and various other cancers that promote MYCN stabilization. In addition, both the MYCN and mTOR signaling axes can directly regulate a common translation pathway that leads to increased protein synthesis and cell proliferation. However, a strategy of concurrently targeting MYCN and mTOR signaling in NB remains unexplored. This study aimed to investigate the therapeutic potential of targeting dysregulated protein synthesis pathways by inhibiting the MYCN and mTOR pathways together in NB. Methods Using small molecule/pharmacologic approaches, we evaluated the effects of combined inhibition of MYCN transcription and mTOR signaling on NB cell growth/survival and associated molecular mechanism(s) in NB cell lines. We used two well-established BET (bromodomain extra-terminal) protein inhibitors (JQ1, OTX-015), and a clinically relevant mTOR inhibitor, temsirolimus, to target MYCN transcription and mTOR signaling, respectively. The single agent and combined efficacies of these inhibitors on NB cell growth, apoptosis, cell cycle and neurospheres were assessed using MTT, Annexin-V, propidium-iodide staining and sphere assays, respectively. Effects of inhibitors on global protein synthesis were quantified using a fluorescence-based (FamAzide)-based protein synthesis assay. Further, we investigated the specificities of these inhibitors in targeting the associated pathways/molecules using western blot analyses. Results Co-treatment of JQ1 or OTX-015 with temsirolimus synergistically suppressed NB cell growth/survival by inducing G1 cell cycle arrest and apoptosis with greatest efficacy in MYCN-amplified NB cells. Mechanistically, the co-treatment of JQ1 or OTX-015 with temsirolimus significantly downregulated the expression levels of phosphorylated 4EBP1/p70-S6K/eIF4E (mTOR components) and BRD4 (BET protein)/MYCN proteins. Further, this combination significantly inhibited global protein synthesis, compared to single agents. Our findings also demonstrated that both JQ1 and temsirolimus chemosensitized NB cells when tested in combination with cisplatin chemotherapy. Conclusions Together, our findings demonstrate synergistic efficacy of JQ1 or OTX-015 and temsirolimus against MYCN-driven NB, by dual-inhibition of MYCN (targeting transcription) and mTOR (targeting translation). Additional preclinical evaluation is warranted to determine the clinical utility of targeted therapy for high-risk NB patients.


2021 ◽  
Author(s):  
Lomon So ◽  
Kazushige Obata-Ninomiya ◽  
Alex Hu ◽  
Virginia Muir ◽  
Ayako Takamori ◽  
...  

Increased protein synthesis is a hallmark of lymphocyte activation. Regulatory T cells (Tregs) suppress the activation and subsequent effector functions of CD4 effector T cells (Teff). Molecular mechanisms that enforce suppression on CD4 Teff cell function are unclear. Control of CD4 Teff cell activation by Tregs has largely been defined at the transcriptional level, which does not reflect changes in post-transcriptional control. We found that Tregs suppressed activation-induced global protein synthesis in CD4 Teff cells prior to cell division. We analyzed genome-wide changes in the transcriptome and translatome of activated CD4 Teff cells using two independent approaches. We show that mRNAs encoding for the protein synthesis machinery are regulated at the level of translation in activated Teff cells. Strikingly, Tregs suppressed global protein synthesis of CD4 Teff cells by specifically inhibiting mRNAs of the translation machinery at the level of mTORC1-mediated translation control. Lastly, we found that the RNA helicase eIF4A inhibitor rocaglamide A (RocA) can suppress CD4 Teff activation in vitro to alleviate inflammatory CD4 Teff activation caused by acute Treg depletion in vivo. These data provide evidence that peripheral tolerance is enforced by Tregs, mediated by IL-10, through mRNA translational control in CD4 Teff cells. Therefore, therapeutic targeting of the protein synthesis machinery can mitigate inflammatory responses invoked by Treg loss of function.


2021 ◽  
Author(s):  
Sarah Slavoff ◽  
Xiongwen Cao ◽  
Alexandra Khitun ◽  
Cecelia Harold ◽  
Carson Bryant ◽  
...  

Abstract Many unannotated microproteins and alternative proteins (alt-proteins) have recently been found to be co-encoded with canonical proteins, but few of their functions are known. Motivated by the hypothesis that alt-proteins undergoing active or stress-induced synthesis could play important cellular roles, here, we developed a chemoproteomic pipeline to identify nascent alt-proteins in human cells. We identified 22 actively translated unannotated alt-proteins, one of which is upregulated after DNA damage stress. We further defined MINAS-60 (MIcroprotein that Negatively regulates ASsembly of the pre-60S ribosomal subunit), a nucleolar localized alt-protein co-encoded with human RBM10. Depletion of MINAS-60 increases the amount of the mature 60S ribosomal subunit, consequently upregulating global protein synthesis and cell proliferation by repressing late-stage pre-60S assembly and export of the 60S ribosome subunit to the cytoplasm. Together, these results implicate MINAS-60 as a repressor of ribosome biogenesis, and demonstrate that chemoproteomics can enable generation of functional hypotheses for uncharacterized alt-proteins.


Sign in / Sign up

Export Citation Format

Share Document