inactive state
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 50)

H-INDEX

26
(FIVE YEARS 4)

2021 ◽  
Vol 22 (23) ◽  
pp. 12906
Author(s):  
Masaya Mitsumoto ◽  
Kanna Sugaya ◽  
Kazuki Kazama ◽  
Ryosuke Nakano ◽  
Takahiro Kosugi ◽  
...  

G-protein coupled receptors (GPCRs) are known for their low stability and large conformational changes upon transitions between multiple states. A widely used method for stabilizing these receptors is to make chimeric receptors by fusing soluble proteins (i.e., fusion partner proteins) into the intracellular loop 3 (ICL3) connecting the transmembrane helices 5 and 6 (TM5 and TM6). However, this fusion approach requires experimental trial and error to identify appropriate soluble proteins, residue positions, and linker lengths for making the fusion. Moreover, this approach has not provided state-targeting stabilization of GPCRs. Here, to rationally stabilize a class A GPCR, adenosine A2A receptor (A2AR) in a target state, we carried out the custom-made de novo design of α-helical fusion partner proteins, which can fix the conformation of TM5 and TM6 to that in an inactive state of A2AR through straight helical connections without any kinks or intervening loops. The chimeric A2AR fused with one of the designs (FiX1) exhibited increased thermal stability. Moreover, compared with the wild type, the binding affinity of the chimera against the agonist NECA was significantly decreased, whereas that against the inverse agonist ZM241385 was similar, indicating that the inactive state was selectively stabilized. Our strategy contributes to the rational state-targeting stabilization of GPCRs.


2021 ◽  
Author(s):  
Michael J. Robertson ◽  
Feng He ◽  
Justin G. Meyerowitz ◽  
Alpay B. Seven ◽  
Ouliana Panova ◽  
...  

Cryogenic electron microscopy (cryo-EM) has widened the field of structure-based drug discovery by allowing for routine determination of membrane protein structures previously intractable. However, despite representing one of the largest classes of therapeutic targets, most inactive-state G protein-coupled receptors (GPCRs) have remained inaccessible for cryo-EM because their small size and membrane-embedded nature impedes projection alignment for high-resolution map reconstructions. Here we demonstrate that a camelid single-chain antibody (nanobody) recognizing a grafted intracellular loop can be used to obtain cryo-EM structures of different inactive-state GPCRs at resolutions comparable or better than those obtained by X-ray crystallography. Using this approach, we obtained the structure of human neurotensin 1 receptor (NTSR1) bound to antagonist SR48692, of μ-opioid receptor (MOR) bound to the clinical antagonist alvimopan, as well as the structure of the previously uncharacterized somatostatin receptor 2 (SSTR2) in the apo state; each of these structures yields novel insights into ligand binding and specificity. We expect this rapid, straightforward approach to facilitate the broad structural exploration of GPCR inactive states without the need for extensive engineering and crystallization.


Author(s):  
Ruka Matsuura ◽  
Tatsuro Nakajima ◽  
Saya Ichihara ◽  
Takashi Sado

Non-coding Xist RNA plays an essential role in X chromosome inactivation (XCI) in female mammals. It coats the X chromosome in cis and mediates the recruitment of many proteins involved in gene silencing and heterochromatinization. The molecular basis of how Xist RNA initiates chromosomal silencing and what proteins participate in this process has been extensively studied and elucidated. Its involvement in the establishment and maintenance of the X-inactivated state is, however, less understood. The XistIVS allele we previously reported is peculiar in that it can initiate XCI but fails to establish the inactive state that is stably maintained and, therefore, may provide an opportunity to explore how Xist RNA contributes to establish a robust heterochromatin state. Here we demonstrate that ectopic splicing taking place to produce XistIVS RNA disturbs its function to properly establish stable XCI state. This finding warrants the potential of XistIVS RNA to provide further insight into our understanding of how Xist RNA contributes to establish sustainable heterochromatin.


Author(s):  
David I. Rosenbaum ◽  
Kalana Jayanetti

Abstract Do traditional two-state worklife estimates need adjustment for unemployment? To answer, an augmented three-state model classifies individuals as either 1) employed; 2) unemployed; or 3) inactive but not marginally attached. Periods of unemployment may reduce worklives; however, removal of those marginally attached or discouraged from the inactive state raises worklives. The three-state model results are compared to worklife estimates from the same initial data using the traditional two-state model. Results show that in many cases, the two-state model results are a good proxy for the three-state results that control for unemployment.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6125
Author(s):  
Gerald Thiel ◽  
Tobias M. Backes ◽  
Lisbeth A. Guethlein ◽  
Oliver G. Rössler

Elk-1 is a transcription factor that binds together with a dimer of the serum response factor (SRF) to the serum-response element (SRE), a genetic element that connects cellular stimulation with gene transcription. Elk-1 plays an important role in the regulation of cellular proliferation and apoptosis, thymocyte development, glucose homeostasis and brain function. The biological function of Elk-1 relies essentially on the interaction with other proteins. Elk-1 binds to SRF and generates a functional ternary complex that is required to activate SRE-mediated gene transcription. Elk-1 is kept in an inactive state under basal conditions via binding of a SUMO-histone deacetylase complex. Phosphorylation by extracellular signal-regulated protein kinase, c-Jun N-terminal protein kinase or p38 upregulates the transcriptional activity of Elk-1, mediated by binding to the mediator of RNA polymerase II transcription (Mediator) and the transcriptional coactivator p300. Strong and extended phosphorylation of Elk-1 attenuates Mediator and p300 recruitment and allows the binding of the mSin3A-histone deacetylase corepressor complex. The subsequent dephosphorylation of Elk-1, catalyzed by the protein phosphatase calcineurin, facilitates the re-SUMOylation of Elk-1, transforming Elk-1 back to a transcriptionally inactive state. Thus, numerous protein–protein interactions control the activation cycle of Elk-1 and are essential for its biological function.


2021 ◽  
Author(s):  
Pekka Jaako ◽  
Alexandre Faille ◽  
Shengjiang Tan ◽  
Chi C Wong ◽  
Norberto Escudero-Urquijo ◽  
...  

Protein synthesis is a cyclical process consisting of translation initiation, elongation, termination and ribosome recycling. The release factors SBDS and EFL1 (both mutated in the leukaemia predisposition disorder Shwachman-Diamond syndrome) license entry of nascent 60S ribosomal subunits into active translation by evicting the anti-association factor eIF6 from the 60S intersubunit face. Here, we show that in mammalian cells, eIF6 holds all free cytoplasmic 60S subunits in a translationally inactive state and that SBDS and EFL1 are the minimal components required to recycle these 60S subunits back into additional rounds of translation by evicting eIF6. Increasing the dose of eIF6 in mice in vivo impairs terminal erythropoiesis by sequestering post-termination 60S subunits in the cytoplasm, disrupting subunit joining and attenuating global protein synthesis. Our data reveal that ribosome maturation and recycling are dynamically coupled by a mechanism that is disrupted in an inherited leukaemia predisposition disorder.


2021 ◽  
Author(s):  
George Spracklin ◽  
Nezar Alexander Abdennur ◽  
Maxim Imakaev ◽  
Neil Chowdhury ◽  
Sriharsa Pradhan ◽  
...  

Two dominant processes organizing chromosomes are loop extrusion and the compartmental segregation of active and inactive chromatin. The molecular players involved in loop extrusion during interphase, cohesin and CTCF, have been extensively studied and experimentally validated. However, neither the molecular determinants nor the functional roles of compartmentalization are well understood. Here, we distinguish three inactive chromatin states using contact frequency profiling, comprising two types of heterochromatin and a previously uncharacterized inactive state exhibiting a neutral interaction preference. We find that heterochromatin marked by long continuous stretches of H3K9me3, HP1α and HP1β correlates with a conserved signature of strong compartmentalization and is abundant in HCT116 colon cancer cells. We demonstrate that disruption of DNA methyltransferase activity dramatically remodels genome compartmentalization as a consequence of the loss of H3K9me3 and HP1 binding. Interestingly, H3K9me3-HP1α/β is replaced by the neutral inactive state and retains late replication timing. Furthermore, we show that H3K9me3-HP1α/β heterochromatin is permissive to loop extrusion by cohesin but refractory to CTCF, explaining a paucity of visible loop extrusion-associated patterns in Hi-C. Accordingly, CTCF loop extrusion barriers are reactivated upon loss of H3K9me3-HP1α/β, not as a result of canonical demethylation of the CTCF binding motif but due to an intrinsic resistance of H3K9me3-HP1α/β heterochromatin to CTCF binding. Together, our work reveals a dynamic structural and organizational diversity of the inactive portion of the genome and establishes new connections between the regulation of chromatin state and chromosome organization, including an interplay between DNA methylation, compartmentalization and loop extrusion.


2021 ◽  
Vol 565 ◽  
pp. 85-90
Author(s):  
Shigeyuki Matsumoto ◽  
Haruka Taniguchi-Tamura ◽  
Mitsugu Araki ◽  
Takashi Kawamura ◽  
Ryo Miyamoto ◽  
...  

2021 ◽  
Author(s):  
Elena E. Gorbunova ◽  
Erich R. Mackow

Andes virus (ANDV) nonlytically infects pulmonary microvascular endothelial cells (PMECs) causing acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). In HPS patients virtually every PMEC is infected, however the mechanism by which ANDV induces vascular permeability and edema remains to be resolved. The ANDV nucleocapsid (N) protein activates the GTPase, RhoA, in primary human PMECs causing VE-Cadherin internalization from adherens junctions and PMEC permeability. We found that ANDV N protein failed to bind RhoA, but co-precipitates RhoGDI (Rho GDP-dissociation inhibitor), the primary RhoA repressor that normally sequesters RhoA in an inactive state. ANDV N protein selectively binds the RhoGDI C-terminus (69-204) but fails to form ternary complexes with RhoA or inhibit RhoA binding to the RhoGDI N-terminus (1-69). However, we found that ANDV N protein uniquely inhibits RhoA binding to an S34D phosphomimetic RhoGDI mutant. Hypoxia and VEGF increase RhoA induced PMEC permeability by directing Protein Kinase Cα (PKCα) phosphorylation of S34 on RhoGDI. Collectively, ANDV N protein alone activates RhoA by sequestering and reducing RhoGDI available to suppress RhoA. In response to hypoxia and VEGF activated PKCα, ANDV N protein additionally directs the release of RhoA from S34-phosphorylated RhoGDI, synergistically activating RhoA and PMEC permeability. These findings reveal a fundamental edemagenic mechanism that permits ANDV to amplify PMEC permeability in hypoxic HPS patients. Our results rationalize therapeutically targeting PKCα and opposing Protein Kinase A (PKA) pathways that control RhoGDI phosphorylation as a means of resolving ANDV induced capillary permeability, edema and HPS. Importance HPS causing hantaviruses infect pulmonary endothelial cells causing vascular leakage, pulmonary edema and a 35% fatal acute respiratory distress syndrome (ARDS). Hantaviruses don't lyse or disrupt the endothelium but dysregulate normal EC barrier functions and increase hypoxia directed permeability. Our findings reveal a novel underlying mechanism of EC permeability resulting from ANDV N protein binding to RhoGDI, a regulatory protein that normally maintains edemagenic RhoA in an inactive state and inhibits EC permeability. ANDV N sequesters RhoGDI and enhances the release of RhoA from S34 phosphorylated RhoGDI. These findings indicate that ANDV N induces the release of RhoA from PKC phosphorylated RhoGDI, synergistically enhancing hypoxia directed RhoA activation and PMEC permeability. Our data suggests inhibiting PKC and activating PKA phosphorylation of RhoGDI as mechanisms of inhibiting ANDV directed EC permeability and therapeutically restricting edema in HPS patients. These findings may be broadly applicable to other causes of ARDS.


Sign in / Sign up

Export Citation Format

Share Document