liposome fusion
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 19)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Vol 22 (8) ◽  
pp. 4103
Author(s):  
Ariana Abawi ◽  
Xiaoyi Wang ◽  
Julien Bompard ◽  
Anna Bérot ◽  
Valentina Andretto ◽  
...  

Novel nanomedicines have been engineered to deliver molecules with therapeutic potentials, overcoming drawbacks such as poor solubility, toxicity or short half-life. Lipid-based carriers such as liposomes represent one of the most advanced classes of drug delivery systems. A Monomethyl Auristatin E (MMAE) warhead was grafted on a lipid derivative and integrated in fusogenic liposomes, following the model of antibody drug conjugates. By modulating the liposome composition, we designed a set of particles characterized by different membrane fluidities as a key parameter to obtain selective uptake from fibroblast or prostate tumor cells. Only the fluid liposomes made of palmitoyl-oleoyl-phosphatidylcholine and dioleoyl-phosphatidylethanolamine, integrating the MMAE-lipid derivative, showed an effect on prostate tumor PC-3 and LNCaP cell viability. On the other hand, they exhibited negligible effects on the fibroblast NIH-3T3 cells, which only interacted with rigid liposomes. Therefore, fluid liposomes grafted with MMAE represent an interesting example of drug carriers, as they can be easily engineered to promote liposome fusion with the target membrane and ensure drug selectivity.


Biomaterials ◽  
2021 ◽  
pp. 120768
Author(s):  
Lingbing Yang ◽  
Xubo Lin ◽  
Jin Zhou ◽  
Sen Hou ◽  
Yunnan Fang ◽  
...  

2021 ◽  
Author(s):  
Mette Malle ◽  
Philipp Loffler ◽  
Soeren Bohr ◽  
Magnus Sletfjerding ◽  
Nikolaj Risgaard ◽  
...  

Abstract Combinatorial high throughput methodologies are central for both screening and discovery in synthetic biochemistry and biomedical sciences. They are, however, often reliant on large scale analyses and thus limited by long running time and excessive materials cost. We herein present Single PARticle Combinatorial multiplexed Liposome fusion mediated by DNA (SPARCLD), for the parallelized, multi-step and non-deterministic fusion of individual zeptoliter nanocontainers. We observed directly the efficient (>93%), and leakage free stochastic fusion sequences for arrays of surface tethered target liposomes with six freely diffusing populations of cargo liposomes, each functionalized with individual lipidated ssDNA (LiNA) and fluorescent barcoded by distinct ratio of chromophores. The stochastic fusion results in distinct permutation of fusion sequences for each autonomous nanocontainer. Real-time TIRF imaging allowed the direct observation of >16000 fusions and 566 distinct fusion sequences accurately classified using machine learning. The high-density arrays of surface tethered target nanocontainers ~42,000 containers per mm2 offers entire combinatorial multiplex screens using only picograms of material.


Langmuir ◽  
2021 ◽  
Vol 37 (5) ◽  
pp. 1861-1873
Author(s):  
Martín E. Villanueva ◽  
Francesca Giudice ◽  
Ernesto Ambroggio ◽  
Raquel V. Vico

2021 ◽  
Author(s):  
Mette Galsgaard Malle ◽  
Philipp M. G. Löffler ◽  
Søren S.-R. Bohr ◽  
Magnus Berg Sletfjerding ◽  
Nikolaj Alexander Risgaard ◽  
...  

AbstractCombinatorial high throughput methodologies are central for both screening and discovery in synthetic biochemistry and biomedical sciences. They are, however, often reliant on large scale analyses and thus limited by long running time and excessive materials cost. We herein present Single PARticle Combinatorial multiplexed Liposome fusion mediated by DNA (SPARCLD), for the parallelized, multi-step and non-deterministic fusion of individual zeptoliter nanocontainers. We observed directly the efficient (>93%), and leakage free stochastic fusion sequences for arrays of surface tethered target liposomes with six freely diffusing populations of cargo liposomes, each functionalized with individual lipidated ssDNA (LiNA) and fluorescent barcoded by distinct ratio of chromophores. The stochastic fusion results in distinct permutation of fusion sequences for each autonomous nanocontainer. Real-time TIRF imaging allowed the direct observation of >16000 fusions and 566 distinct fusion sequences accurately classified using machine learning. The high-density arrays of surface tethered target nanocontainers ∼42,000 containers per mm2 offers entire combinatorial multiplex screens using only picograms of material.


2021 ◽  
Vol 118 (4) ◽  
pp. e2019314118
Author(s):  
Karolina P. Stepien ◽  
Josep Rizo

Neurotransmitter release is governed by eight central proteins among other factors: the neuronal SNAREs syntaxin-1, synaptobrevin, and SNAP-25, which form a tight SNARE complex that brings the synaptic vesicle and plasma membranes together; NSF and SNAPs, which disassemble SNARE complexes; Munc18-1 and Munc13-1, which organize SNARE complex assembly; and the Ca2+ sensor synaptotagmin-1. Reconstitution experiments revealed that Munc18-1, Munc13-1, NSF, and α-SNAP can mediate Ca2+-dependent liposome fusion between synaptobrevin liposomes and syntaxin-1–SNAP-25 liposomes, but high fusion efficiency due to uncontrolled SNARE complex assembly did not allow investigation of the role of synaptotagmin-1 on fusion. Here, we show that decreasing the synaptobrevin-to-lipid ratio in the corresponding liposomes to very low levels leads to inefficient fusion and that synaptotagmin-1 strongly stimulates fusion under these conditions. Such stimulation depends on Ca2+ binding to the two C2 domains of synaptotagmin-1. We also show that anchoring SNAP-25 on the syntaxin-1 liposomes dramatically enhances fusion. Moreover, we uncover a synergy between synaptotagmin-1 and membrane anchoring of SNAP-25, which allows efficient Ca2+-dependent fusion between liposomes bearing very low synaptobrevin densities and liposomes containing very low syntaxin-1 densities. Thus, liposome fusion in our assays is achieved with a few SNARE complexes in a manner that requires Munc18-1 and Munc13-1 and that depends on Ca2+ binding to synaptotagmin-1, all of which are fundamental features of neurotransmitter release in neurons.


Author(s):  
Yaru Hu ◽  
Le Zhu ◽  
Cong Ma

Formation of the trans-SNARE complex is believed to generate a force transfer to the membranes to promote membrane fusion, but the underlying mechanism remains elusive. In this study, we show that helix-breaking and/or length-increasing insertions in the juxtamembrane linker region of synaptobrevin-2 exert diverse effects on liposome fusion, in a manner dependent on the insertion position relative to the two conserved tryptophan residues (W89/W90). Helical extension of synaptobrevin-2 to W89/W90 is a prerequisite for initiating membrane merger. The transmembrane region of synaptobrevin-2 enables proper localization of W89/W90 at the membrane interface to gate force transfer. Besides, our data indicate that the SNARE regulatory components Munc18-1 and Munc13-1 impose liposome fusion strong demand on tight coupling between the SNARE motif and the transmembrane region of synaptobrevin-2.


2021 ◽  
Author(s):  
Geert G.A. Daudey ◽  
Meng-Jie Shen ◽  
Ankush Singhal ◽  
Patrick Van der Est ◽  
Agur Sevink ◽  
...  

Biological membrane fusion is a highly specific and coordinated process as a multitude of vesicular fusion events proceed simultaneously in a complex environment with minimal off-target delivery. In this study,...


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Chi-Wei Tien ◽  
Bin Yu ◽  
Mengjia Huang ◽  
Karolina P. Stepien ◽  
Kyoko Sugita ◽  
...  

Abstract Assembly of SNARE complexes that mediate neurotransmitter release requires opening of a ‘closed’ conformation of UNC-64/syntaxin. Rescue of unc-13/Munc13 mutant phenotypes by overexpressed open UNC-64/syntaxin suggested a specific function of UNC-13/Munc13 in opening UNC-64/ syntaxin. Here, we revisit the effects of open unc-64/syntaxin by generating knockin (KI) worms. The KI animals exhibit enhanced spontaneous and evoked exocytosis compared to WT animals. Unexpectedly, the open syntaxin KI partially suppresses exocytosis defects of various mutants, including snt-1/synaptotagmin, unc-2/P/Q/N-type Ca2+ channel alpha-subunit and unc-31/CAPS, in addition to unc-13/Munc13 and unc-10/RIM, and enhanced exocytosis in tom-1/Tomosyn mutants. However, open syntaxin aggravates the defects of unc-18/Munc18 mutants. Correspondingly, open syntaxin partially bypasses the requirement of Munc13 but not Munc18 for liposome fusion. Our results show that facilitating opening of syntaxin enhances exocytosis in a wide range of genetic backgrounds, and may provide a general means to enhance synaptic transmission in normal and disease states.


2020 ◽  
Vol 4 (11) ◽  
pp. 2000153
Author(s):  
Yannick R. F. Schmid ◽  
Leo Scheller ◽  
Sebastian Buchmann ◽  
Petra S. Dittrich

Sign in / Sign up

Export Citation Format

Share Document