scholarly journals ON/OFF domains shape receptive fields in mouse visual cortex

2021 ◽  
Author(s):  
Elaine Tring ◽  
Konnie Duan ◽  
Dario L. Ringach

In higher mammals, thalamic afferents to primary visual cortex (area V1) segregate according to their responses to increases (ON) or decreases (OFF) in luminance1–4. This organization induces columnar, ON/OFF domains postulated to provide a scaffold for the emergence of orientation tuning2,5–15. To further test this idea, we asked whether ON/OFF domains exist in mouse V1 – a species containing orientation tuned, simple cells, like those found in other mammals16–19. Here we show that mouse V1 is indeed parceled into ON/OFF domains. Revealingly, fluctuations in the relative density ON/OFF neurons on the cortical surface mirror fluctuations in the relative density of ON/OFF receptive field centers on the visual field. In each cortical volume examined, the average of simple-cell receptive fields correlates with the difference between the average of ON and OFF receptive fields7. Moreover, the local diversity of simple-cell receptive fields is explained by a model in which neurons linearly combine a small number of ON and OFF signals available in their cortical neighborhoods15,20. Altogether, these findings indicate that ON/OFF domains originate in fluctuations of the spatial density of ON/OFF inputs on the visual field which, in turn, shapes the structure of receptive fields10–13,21–23.

1995 ◽  
Vol 12 (1) ◽  
pp. 141-151 ◽  
Author(s):  
Yuri Danilov ◽  
Rodney J. Moore ◽  
Von R. King ◽  
Peter D. Spear

AbstractThere is controversy in the literature concerning whether or not neurons in the cat's posteromedial lateral suprasylvian (PMLS) visual cortex are orientation selective. Previous studies that have tested cells with simple bar stimuli have found that few, if any, PMLS cells are orientation selective. Conversely, studies that have used repetitive stimuli such as gratings have found that most or all PMLS cells are orientation selective. It is not known whether this difference in results is due to the stimuli used or the laboratories using them. The present experiments were designed to answer this question by testing individual PMLS neurons for orientation sensitivity with both bar and grating stimuli. Using quantitative response measures, we found that most PMLS neurons respond well enough to stationary flashed stimuli to use such stimuli to test for orientation sensitivity. On the basis of these tests, we found that about 85% of the cells with well-defined receptive fields are orientation sensitive to flashed gratings, and a similar percentage are orientation sensitive to flashed bars. About 80% of the cells were orientation sensitive to both types of stimuli. The preferred orientations typically were similar for the two tests, and they were orthogonal to the preferred direction of movement. The strength of the orientation sensitivity (measured as the ratio of discharge to the preferred and nonpreferred orientations) was similar to both types of stimuli. However, the width of the orientation tuning curves was systematically broader to bars than to gratings. Several hypotheses are considered as to why previous studies using bars failed to find evidence for orientation sensitivity. In addition, a mechanism for the difference in orientation tuning to bars and gratings is suggested.


2019 ◽  
Author(s):  
Alessandro La Chioma ◽  
Tobias Bonhoeffer ◽  
Mark Hübener

SummaryBinocular disparity, the difference between left and right eye images, is a powerful cue for depth perception. Many neurons in the visual cortex of higher mammals are sensitive to binocular disparity, with distinct disparity tuning properties across primary and higher visual areas. Mouse primary visual cortex (V1) has been shown to contain disparity-tuned neurons, but it is unknown how these signals are processed beyond V1. We find that disparity signals are prominent in higher areas of mouse visual cortex. Preferred disparities markedly differ among visual areas, with area RL encoding visual stimuli very close to the mouse. Moreover, disparity preference is systematically related to visual field elevation, such that neurons with receptive fields in the lower visual field are overall tuned to near disparities, likely reflecting an adaptation to natural image statistics. Our results reveal ecologically relevant areal specializations for binocular disparity processing across mouse visual cortex.


Of the many possible functions of the macaque monkey primary visual cortex (striate cortex, area 17) two are now fairly well understood. First, the incoming information from the lateral geniculate bodies is rearranged so that most cells in the striate cortex respond to specifically oriented line segments, and, second, information originating from the two eyes converges upon single cells. The rearrangement and convergence do not take place immediately, however: in layer IVc, where the bulk of the afferents terminate, virtually all cells have fields with circular symmetry and are strictly monocular, driven from the left eye or from the right, but not both; at subsequent stages, in layers above and below IVc, most cells show orientation specificity, and about half are binocular. In a binocular cell the receptive fields in the two eyes are on corresponding regions in the two retinas and are identical in structure, but one eye is usually more effective than the other in influencing the cell; all shades of ocular dominance are seen. These two functions are strongly reflected in the architecture of the cortex, in that cells with common physiological properties are grouped together in vertically organized systems of columns. In an ocular dominance column all cells respond preferentially to the same eye. By four independent anatomical methods it has been shown that these columns have the form of vertically disposed alternating left-eye and right-eye slabs, which in horizontal section form alternating stripes about 400 μm thick, with occasional bifurcations and blind endings. Cells of like orientation specificity are known from physiological recordings to be similarly grouped in much narrower vertical sheeet-like aggregations, stacked in orderly sequences so that on traversing the cortex tangentially one normally encounters a succession of small shifts in orientation, clockwise or counterclockwise; a 1 mm traverse is usually accompanied by one or several full rotations through 180°, broken at times by reversals in direction of rotation and occasionally by large abrupt shifts. A full complement of columns, of either type, left-plus-right eye or a complete 180° sequence, is termed a hypercolumn. Columns (and hence hypercolumns) have roughly the same width throughout the binocular part of the cortex. The two independent systems of hypercolumns are engrafted upon the well known topographic representation of the visual field. The receptive fields mapped in a vertical penetration through cortex show a scatter in position roughly equal to the average size of the fields themselves, and the area thus covered, the aggregate receptive field, increases with distance from the fovea. A parallel increase is seen in reciprocal magnification (the number of degrees of visual field corresponding to 1 mm of cortex). Over most or all of the striate cortex a movement of 1-2 mm, traversing several hypercolumns, is accompanied by a movement through the visual field about equal in size to the local aggregate receptive field. Thus any 1-2 mm block of cortex contains roughly the machinery needed to subserve an aggregate receptive field. In the cortex the fall-off in detail with which the visual field is analysed, as one moves out from the foveal area, is accompanied not by a reduction in thickness of layers, as is found in the retina, but by a reduction in the area of cortex (and hence the number of columnar units) devoted to a given amount of visual field: unlike the retina, the striate cortex is virtually uniform morphologically but varies in magnification. In most respects the above description fits the newborn monkey just as well as the adult, suggesting that area 17 is largely genetically programmed. The ocular dominance columns, however, are not fully developed at birth, since the geniculate terminals belonging to one eye occupy layer IVc throughout its length, segregating out into separate columns only after about the first 6 weeks, whether or not the animal has visual experience. If one eye is sutured closed during this early period the columns belonging to that eye become shrunken and their companions correspondingly expanded. This would seem to be at least in part the result of interference with normal maturation, though sprouting and retraction of axon terminals are not excluded.


1990 ◽  
Vol 64 (4) ◽  
pp. 1352-1360 ◽  
Author(s):  
M. R. Isley ◽  
D. C. Rogers-Ramachandran ◽  
P. G. Shinkman

1. The present experiments were designed to assess the effects of relatively large optically induced interocular torsional disparities on the developing kitten visual cortex. Kittens were reared with restricted visual experience. Three groups viewed a normal visual environment through goggles fitted with small prisms that introduced torsional disparities between the left and right eyes' visual fields, equal but opposite in the two eyes. Kittens in the +32 degrees goggle rearing condition experienced a 16 degrees counterclockwise rotation of the left visual field and a 16 degrees clockwise rotation of the right visual field; in the -32 degrees goggle condition the rotations were clockwise in the left eye and counterclockwise in the right. In the control (0 degree) goggle condition, the prisms did not rotate the visual fields. Three additional groups viewed high-contrast square-wave gratings through Polaroid filters arranged to provide a constant 32 degrees of interocular orientation disparity. 2. Recordings were made from neurons in visual cortex around the border of areas 17 and 18 in all kittens. Development of cortical ocular dominance columns was severely disrupted in all the experimental (rotated) rearing conditions. Most cells were classified in the extreme ocular dominance categories 1, 2, 6, and 7. Development of the system of orientation columns was also affected: among the relatively few cells with oriented receptive fields in both eyes, the distributions of interocular disparities in preferred stimulus orientation were centered near 0 degree but showed significantly larger variances than in the control condition.(ABSTRACT TRUNCATED AT 250 WORDS)


Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 59-59
Author(s):  
J M Zanker ◽  
M P Davey

Visual information processing in primate cortex is based on a highly ordered representation of the surrounding world. In addition to the retinotopic mapping of the visual field, systematic variations of the orientation tuning of neurons are described electrophysiologically for the first stages of the visual stream. On the way to understanding the relation of position and orientation representation, in order to give an adequate account of cortical architecture, it will be an essential step to define the minimum spatial requirements for detection of orientation. We addressed the basic question of spatial limits for detecting orientation by comparing computer simulations of simple orientation filters with psychophysical experiments in which the orientation of small lines had to be detected at various positions in the visual field. At sufficiently high contrast levels, the minimum physical length of a line whose orientation can just be resolved is not constant when presented at various eccentricities, but covaries inversely with the cortical magnification factor. A line needs to span less than 0.2 mm on the cortical surface in order to be recognised as oriented, independently of the actual eccentricity at which the stimulus is presented. This seems to indicate that human performance for this task approaches the physical limits, requiring hardly more than approximately three input elements to be activated, in order to detect the orientation of a highly visible line segment. Combined with the estimates for receptive field sizes of orientation-selective filters derived from computer simulations, this experimental result may nourish speculations of how the rather local elementary process underlying orientation detection in the human visual system can be assembled to form much larger receptive fields of the orientation-sensitive neurons known to exist in the primate visual system.


2000 ◽  
Vol 17 (1) ◽  
pp. 107-118 ◽  
Author(s):  
ULRICH HILLENBRAND ◽  
J. LEO van HEMMEN

The thalamus is the major gate to the cortex and its control over cortical responses is well established. Cortical feedback to the thalamus is, in turn, the anatomically dominant input to relay cells, yet its influence on thalamic processing has been difficult to interpret. For an understanding of complex sensory processing, detailed concepts of the corticothalamic interplay need yet to be established. Drawing on various physiological and anatomical data, we elaborate the novel hypothesis that the visual cortex controls the spatiotemporal structure of cortical receptive fields via feedback to the lateral geniculate nucleus. Furthermore, we present and analyze a model of corticogeniculate loops that implements this control, and exhibit its ability of object segmentation by statistical motion analysis in the visual field.


1997 ◽  
Vol 9 (5) ◽  
pp. 959-970 ◽  
Author(s):  
Christian Piepenbrock ◽  
Helge Ritter ◽  
Klaus Obermayer

Correlation-based learning (CBL) has been suggested as the mechanism that underlies the development of simple-cell receptive fields in the primary visual cortex of cats, including orientation preference (OR) and ocular dominance (OD) (Linsker, 1986; Miller, Keller, & Stryker, 1989). CBL has been applied successfully to the development of OR and OD individually (Miller, Keller, & Stryker, 1989; Miller, 1994; Miyashita & Tanaka, 1991; Erwin, Obermayer, & Schulten, 1995), but the conditions for their joint development have not been studied (but see Erwin & Miller, 1995, for independent work on the same question) in contrast to competitive Hebbian models (Obermayer, Blasdel, & Schulten, 1992). In this article, we provide insight into why this has been the case: OR and OD decouple in symmetric CBL models, and a joint development of OR and OD is possible only in a parameter regime that depends on nonlinear mechanisms.


2020 ◽  
Author(s):  
Jaeson Jang ◽  
Min Song ◽  
Gwangsu Kim ◽  
Se-Bum Paik

AbstractIn higher mammals, the primary visual cortex (V1) is organized into diverse tuning maps of visual features such as orientation, spatial frequency and ocular dominance. The topography of these maps is observed to intersect orthogonally, implying that a developmental principle for efficient tiling of sensory modules may exist. However, it remains unclear how such a systematic relationship among cortical tuning maps could develop. Here, we show that the orthogonal organization of tuning modules already exist in retinal ganglion cell (RGC) mosaics, and that this provides a blueprint of the orthogonal organization in V1. Firstly, from the analysis of multi-electrode recording data in V1, we found that the ON-OFF subregion distance of receptive fields varies periodically across the cortical surface, strongly correlated to ocular dominance and spatial frequency in the area. Further, the ON-OFF alignment angle, that is orthogonal to the ON-OFF distance, appears to correlate with orientation tuning. These suggest that the orthogonal organization in V1 may originate from the spatial organization of the ON-OFF receptive fields in the bottom-up projections, and this scenario was tested from analysis of the RGC mosaics data in monkeys and cats. We found that the ON-OFF RGC distance and ON-OFF angle of neighbouring RGCs are organized into a topographic tiling across mosaics, analogous to the orthogonal intersection of cortical tuning maps. These findings suggest that the regularly structured ON-OFF patterns mirrored from a retina may initiate efficient tiling of functional domains in V1.HighlightsOrthogonal organization of visual tuning maps are observed in both V1 and the retinaCortical tuning maps are correlated with the profile of ON-OFF feedforward projectionsThe profile of ON-OFF receptive fields varies periodically across the V1 surfaceRegularly structured RGC patterns initiate the orthogonal tiling of sensory modules in V1


2021 ◽  
Vol 15 ◽  
Author(s):  
Tushar Chauhan ◽  
Timothée Masquelier ◽  
Benoit R. Cottereau

The early visual cortex is the site of crucial pre-processing for more complex, biologically relevant computations that drive perception and, ultimately, behaviour. This pre-processing is often studied under the assumption that neural populations are optimised for the most efficient (in terms of energy, information, spikes, etc.) representation of natural statistics. Normative models such as Independent Component Analysis (ICA) and Sparse Coding (SC) consider the phenomenon as a generative, minimisation problem which they assume the early cortical populations have evolved to solve. However, measurements in monkey and cat suggest that receptive fields (RFs) in the primary visual cortex are often noisy, blobby, and symmetrical, making them sub-optimal for operations such as edge-detection. We propose that this suboptimality occurs because the RFs do not emerge through a global minimisation of generative error, but through locally operating biological mechanisms such as spike-timing dependent plasticity (STDP). Using a network endowed with an abstract, rank-based STDP rule, we show that the shape and orientation tuning of the converged units are remarkably close to single-cell measurements in the macaque primary visual cortex. We quantify this similarity using physiological parameters (frequency-normalised spread vectors), information theoretic measures [Kullback–Leibler (KL) divergence and Gini index], as well as simulations of a typical electrophysiology experiment designed to estimate orientation tuning curves. Taken together, our results suggest that compared to purely generative schemes, process-based biophysical models may offer a better description of the suboptimality observed in the early visual cortex.


2007 ◽  
Vol 98 (3) ◽  
pp. 1194-1212 ◽  
Author(s):  
Kota S. Sasaki ◽  
Izumi Ohzawa

The receptive fields of complex cells in the early visual cortex are economically modeled by combining outputs of a quadrature pair of linear filters. For actual complex cells, such a minimal model may be insufficient because many more simple cells are thought to make up a complex cell receptive field. To examine the minimalist model physiologically, we analyzed spatial relationships between the internal structure (subunits) and the overall receptive fields of individual complex cells by a two-stimulus interaction technique. The receptive fields of complex cells are more circular and only slightly larger than their subunits in size. In addition, complex cell subunits occupy spatial extents similar to those of simple cell receptive fields. Therefore in these respects, the minimalist schema is a fair approximation to actual complex cells. However, there are violations against the minimal model. Simple cell receptive fields have significantly fewer subregions than complex cell subunits and, in general, simple cell receptive fields are elongated more horizontally than vertically. This bias is absent in complex cell subunits and receptive fields. Thus simple cells cannot be equated to individual complex cell subunits and spatial pooling of simple cells may occur anisotropically to constitute a complex cell subunit. Moreover, when linear filters for complex cell subunits are examined separately for bright and dark responses, there are significant imbalances and position displacements between them. This suggests that actual complex cell receptive fields are constructed by a richer combination of linear filters than proposed by the minimalist model.


Sign in / Sign up

Export Citation Format

Share Document