scholarly journals Social modulation of oogenesis and egg-laying in Drosophila melanogaster

2021 ◽  
Author(s):  
Bailly Tiphaine ◽  
Philip Kohlmeier ◽  
Rampal Etienne ◽  
Bregje Wertheim ◽  
Jean-Christophe Billeter

Being part of a group facilitates cooperation between group members, but also creates competition for limited resources. This conundrum is problematic for gravid females who benefit from being in a group, but whose future offspring may struggle for access to nutrition in larger groups. Females should thus modulate their reproductive output depending on their social context. Although social-context dependent modulation of reproduction is documented in a broad range of species, its underlying mechanisms and functions are poorly understood. In the fruit fly Drosophila melanogaster, females actively attract conspecifics to lay eggs on the same resources, generating groups in which individuals may cooperate or compete. The tractability of the genetics of this species allows dissecting the mechanisms underlying physiological adaptation to their social context. Here, we show that females produce eggs increasingly faster as group size increases. By laying eggs faster in group than alone, females appear to reduce competition between offspring and increase their likelihood of survival. In addition, females in a group lay their eggs during the light phase of the day, while isolated females lay them during the night. We show that responses to the presence of others are determined by vision through the motion detection pathway and that flies from any sex, mating status or species can trigger these responses. The mechanisms of this modulation of egg-laying by group is connected to a lifting of the inhibition of light on oogenesis and egg-laying by stimulating hormonal pathways involving juvenile hormone. Because modulation of reproduction by social context is a hallmark of animals with higher levels of sociality, our findings represent a protosocial mechanism in a species considered solitary that may have been the target of selection for the evolution of more complex social systems.

2021 ◽  
Vol 12 ◽  
Author(s):  
Ryo Hoshino ◽  
Ryusuke Niwa

In many insect species, mating stimuli can lead to changes in various behavioral and physiological responses, including feeding, mating refusal, egg-laying behavior, energy demand, and organ remodeling, which are collectively known as the post-mating response. Recently, an increase in germline stem cells (GSCs) has been identified as a new post-mating response in both males and females of the fruit fly, Drosophila melanogaster. We have extensively studied mating-induced increase in female GSCs of D. melanogaster at the molecular, cellular, and systemic levels. After mating, the male seminal fluid peptide [e.g. sex peptide (SP)] is transferred to the female uterus. This is followed by binding to the sex peptide receptor (SPR), which evokes post-mating responses, including increase in number of female GSCs. Downstream of SP-SPR signaling, the following three hormones and neurotransmitters have been found to act on female GSC niche cells to regulate mating-induced increase in female GSCs: (1) neuropeptide F, a peptide hormone produced in enteroendocrine cells; (2) octopamine, a monoaminergic neurotransmitter synthesized in ovary-projecting neurons; and (3) ecdysone, a steroid hormone produced in ovarian follicular cells. These humoral factors are secreted from each organ and are received by ovarian somatic cells and regulate the strength of niche signaling in female GSCs. This review provides an overview of the latest findings on the inter-organ relationship to regulate mating-induced female GSC increase in D. melanogaster as a model. We also discuss the remaining issues that should be addressed in the future.


2018 ◽  
Author(s):  
Preethi Ravi ◽  
Deepti Trivedi ◽  
Gaiti Hasan

AbstractNeuropeptide signaling influences animal behavior by modulating neuronal activity and thus altering circuit dynamics. Insect flight is a key innate behavior that very likely requires robust neuromodulation. Cellular and molecular components that help modulate flight behavior are therefore of interest and require investigation. In a genetic RNAi screen for G-protein coupled receptors that regulate flight bout durations, we earlier identified several receptors, including the receptor for the neuropeptide FMRFa (FMRFaR). To further investigate modulation of insect flight by FMRFa we generated CRISPR-Cas9 mutants in the gene encoding the Drosophila FMRFaR. The mutants exhibit significant flight deficits with a focus in dopaminergic cells. Expression of a receptor specific RNAi in adult central dopaminergic neurons resulted in progressive loss of sustained flight. Further, genetic and cellular assays demonstrated that FMRFaR stimulates intracellular calcium signaling through the IP3R and helps maintain neuronal excitability in a subset of dopaminergic neurons for positive modulation of flight bout durations.Author summaryNeuropeptides play an important role in modulating neuronal properties such as excitability and synaptic strength and thereby influence innate behavioral outputs. In flying insects, neuromodulation of flight has been primarily attributed to monoamines. In this study, we have used the genetically amenable fruit fly, Drosophila melanogaster to identify a neuropeptide receptor that is required in adults to modulate flight behavior. We show from both knockdown and knockout studies that the neuropeptide receptor, FMRFaR, present on a few central dopaminergic neurons, modulates the duration of flight bouts. Overexpression of putative downstream molecules, the IP3R, an intracellular Ca2+-release channel, and CaMKII, a protein kinase, significantly rescue the flight deficits induced by knockdown of the FMRFaR. Our data support the idea that FMRFaR and CaMKII help maintain optimal membrane excitability of adult dopaminergic neurons required to sustain longer durations of flight bouts. We speculate that the ability to maintain longer flight bouts in natural conditions enhances the individual’s capacity to search and reach food sources as well as find sites suitable for egg laying.


2020 ◽  
Author(s):  
Yongzhuo Chen ◽  
Min Zhang ◽  
Wei Hu ◽  
Jing Li ◽  
Pengcheng Liu ◽  
...  

Abstract Background: Drosophila suzukii has been widely distributed all over the world since 2008, and it is a harmful pest causing great economic loss in many countries. Previous research has found that the presence of Drosophila melanogaster could reduce the emergence and egg laying of Drosophila suzukii. In order to figure out the potential mechanism of this phenomenon, we studied three potential factors including lifetime, larval interspecific competition, and reproductive interference. Results: The results show that the Drosophila suzukii offspring number was significantly decreased when reared with Drosophila melanogaster. The lifetime and larval interspecific competition have no significant effect on the Drosophila suzukii population. Surprisingly, Drosophila melanogaster can cause reproductive interference with male Drosophila suzukii, which leads to a significant decline in the successful mating rate of the latter fruit fly. Conclusions: The presence of Drosophila melanogaster causes the Drosophila suzukii population to decrease through the effect of reproductive interference, and the Drosophila suzukii successful mating rate is significantly decreased for the existence of Drosophila melanogaster.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rachel Paul ◽  
Guillaume Giraud ◽  
Katrin Domsch ◽  
Marilyne Duffraisse ◽  
Frédéric Marmigère ◽  
...  

AbstractFlying insects have invaded all the aerial space on Earth and this astonishing radiation could not have been possible without a remarkable morphological diversification of their flight appendages. Here, we show that characteristic spatial expression profiles and levels of the Hox genes Antennapedia (Antp) and Ultrabithorax (Ubx) underlie the formation of two different flight organs in the fruit fly Drosophila melanogaster. We further demonstrate that flight appendage morphology is dependent on specific Hox doses. Interestingly, we find that wing morphology from evolutionary distant four-winged insect species is also associated with a differential expression of Antp and Ubx. We propose that variation in the spatial expression profile and dosage of Hox proteins is a major determinant of flight appendage diversification in Drosophila and possibly in other insect species during evolution.


2021 ◽  
Author(s):  
Florida López-Arriaga ◽  
César Pérez-Cruz ◽  
Patricia López ◽  
Salvador Flores ◽  
Jorge Cancino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document