scholarly journals Genetic and functional odorant receptor variation in the Homo lineage

2021 ◽  
Author(s):  
Claire A. de March ◽  
Hiroaki Matsunami ◽  
Masashi Abe ◽  
Matthew Cobb ◽  
Kara C. Hoover

AbstractThe largest and rapidly evolving gene family of odorant receptors detect odors to variable degrees due to amino acid sequence and protein structure. Hybridization between humans, Neandertals, and Denisovans implies shared behavior1,2, although some speculate that Neandertals were poor smellers 3,4. We identified genetic and functional variation in humans and extinct lineages in 30 receptors with known function. We show that structural changes in receptor proteins altered odor sensitivity not specificity, indicating a common repertoire across lineages. In humans, variation in receptors may change odor perception or induce odor-specific anosmia 5,6. Variation in sensitivity may reflect local adaptations (e.g., Denisovan sensitivity to honey, Neandertals sensitivity to grass and sulphur). Extinct human lineages had highly conserved receptor genes and proteins. We observe a similar pattern in the Neandertal OR5P3 variant, which produced no response to ∼350 odors. Our data suggest that receptor structure was highly conserved in our closest relatives, but not in living humans. The diversity of geographic adaptations in humans may have produced greater functional variation, increasing our olfactory repertoire and expanding our adaptive capacity 5. Our results provide insight into odorant receptor function and shed light on the olfactory ecology of ancient humans and their extinct relatives. By studying the function of ancient odorant receptor genes, we have been able to get a glimpse of the sensory world of our extinct ancestors and relatives, with some of the variants giving specific insights into potential adaptations shown by these long-dead populations. The functional variability we have identified in the molecular structure of the odorant receptor proteins will aid in the more general problem of understanding the function of odorant receptor proteins and the neurons they are carried by, opening the road to linking receptor function to perception.

Genetics ◽  
2000 ◽  
Vol 156 (2) ◽  
pp. 785-797 ◽  
Author(s):  
Aron Branscomb ◽  
Jon Seger ◽  
Raymond L White

Abstract About 10% of mammalian odorant receptors are transcribed in testes, and odorant-receptor proteins have been detected on mature spermatozoa. Testis-expressed odorant receptors (TORs) are hypothesized to play roles in sperm chemotaxis, but they might also be ordinary nasal odorant receptors (NORs) that are expressed gratuitously in testes. Under the sperm-chemotaxis hypothesis, TORs should be subject to intense sexual selection and therefore should show higher rates of amino acid substitution than NORs, but under the gratuitous-expression hypothesis, TORs are misidentified NORs and therefore should evolve like other NORs. To test these predictions, we estimated synonymous and nonsynonymous divergences of orthologous NOR and TOR coding sequences from rat and mouse. Contrary to both hypotheses, TORs are on average more highly conserved than NORs, especially in certain domains of the OR protein. This pattern suggests that some TORs might perform internal nonolfactory functions in testes; for example, they might participate in the regulation of sperm development. However, the pattern is also consistent with a modified gratuitous-expression model in which NORs with specialized ligand specificities are both more highly conserved than typical NORs and more likely to be expressed in testes.


2020 ◽  
Author(s):  
Xiao-Qing Hou ◽  
Jothi Kumar Yuvaraj ◽  
Rebecca E. Roberts ◽  
C. Rikard Unelius ◽  
Christer Löfstedt ◽  
...  

AbstractInsects detect odors using an array of odorant receptors (ORs), which may expand through gene duplication. How specificities evolve and new functions arise in related ORs within a species remain poorly investigated. We addressed this question by functionally characterizing ORs from the Eurasian spruce bark beetle Ips typographus, in which antennal detection and behavioral responses to pheromones, volatiles from host and non-host trees, and fungal symbionts are well described. In contrast, knowledge of OR function is restricted to two receptors detecting the pheromone compounds (S)-(–)-ipsenol (ItypOR46) and (R)-(–)-ipsdienol (ItypOR49). These receptors belong to a species-specific OR-lineage comprising seven ItypORs. To gain insight into the functional evolution of related ORs, we characterized the five remaining ORs in this clade, using Xenopus oocytes. Two receptors responded primarily to the host tree monoterpenes (+)-3-carene (ItypOR25) and p-cymene (ItypOR27). Two receptors responded to oxygenated monoterpenoids mainly produced by the beetle-associated fungi, with ItypOR23 specific for (+)-trans-(1R,4S)-4-thujanol, and ItypOR29 responding to (+)-isopinocamphone and similar ketones. ItypOR28 responded to the pheromone E-myrcenol from the competitor Ips duplicatus. Overall, the OR responses match well with those of previously characterized olfactory sensory neuron classes except that neurons detecting E-myrcenol have not been identified. Our results showing shared OR-specificity for monoterpenoid compounds is in line with ‘Sensory Drive’ predicting that evolutionarily related ORs are likely to detect structurally similar odorants. However, the variation in functional groups among OR ligands and their diverse ecological origins suggest that neofunctionalization has also taken place during the evolution of this OR-lineage.


2019 ◽  
Vol 26 (8) ◽  
pp. 1311-1327 ◽  
Author(s):  
Pala Rajasekharreddy ◽  
Chao Huang ◽  
Siddhardha Busi ◽  
Jobina Rajkumari ◽  
Ming-Hong Tai ◽  
...  

With the emergence of nanotechnology, new methods have been developed for engineering various nanoparticles for biomedical applications. Nanotheranostics is a burgeoning research field with tremendous prospects for the improvement of diagnosis and treatment of various cancers. However, the development of biocompatible and efficient drug/gene delivery theranostic systems still remains a challenge. Green synthetic approach of nanoparticles with low capital and operating expenses, reduced environmental pollution and better biocompatibility and stability is a latest and novel field, which is advantageous over chemical or physical nanoparticle synthesis methods. In this article, we summarize the recent research progresses related to green synthesized nanoparticles for cancer theranostic applications, and we also conclude with a look at the current challenges and insight into the future directions based on recent developments in these areas.


Author(s):  
T. Santos ◽  
C.S.F. Gomes ◽  
L. Hennetier ◽  
V.A.F. Costa ◽  
L.C. Costa

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jothi K. Yuvaraj ◽  
Rebecca E. Roberts ◽  
Yonathan Sonntag ◽  
Xiao-Qing Hou ◽  
Ewald Grosse-Wilde ◽  
...  

Abstract Background Bark beetles are major pests of conifer forests, and their behavior is primarily mediated via olfaction. Targeting the odorant receptors (ORs) may thus provide avenues towards improved pest control. Such an approach requires information on the function of ORs and their interactions with ligands, which is also essential for understanding the functional evolution of these receptors. Hence, we aimed to identify a high-quality complement of ORs from the destructive spruce bark beetle Ips typographus (Coleoptera, Curculionidae, Scolytinae) and analyze their antennal expression and phylogenetic relationships with ORs from other beetles. Using 68 biologically relevant test compounds, we next aimed to functionally characterize ecologically important ORs, using two systems for heterologous expression. Our final aim was to gain insight into the ligand-OR interaction of the functionally characterized ORs, using a combination of computational and experimental methods. Results We annotated 73 ORs from an antennal transcriptome of I. typographus and report the functional characterization of two ORs (ItypOR46 and ItypOR49), which are responsive to single enantiomers of the common bark beetle pheromone compounds ipsenol and ipsdienol, respectively. Their responses and antennal expression correlate with the specificities, localizations, and/or abundances of olfactory sensory neurons detecting these enantiomers. We use homology modeling and molecular docking to predict their binding sites. Our models reveal a likely binding cleft lined with residues that previously have been shown to affect the responses of insect ORs. Within this cleft, the active ligands are predicted to specifically interact with residues Tyr84 and Thr205 in ItypOR46. The suggested importance of these residues in the activation by ipsenol is experimentally supported through site-directed mutagenesis and functional testing, and hydrogen bonding appears key in pheromone binding. Conclusions The emerging insight into ligand binding in the two characterized ItypORs has a general importance for our understanding of the molecular and functional evolution of the insect OR gene family. Due to the ecological importance of the characterized receptors and widespread use of ipsenol and ipsdienol in bark beetle chemical communication, these ORs should be evaluated for their potential use in pest control and biosensors to detect bark beetle infestations.


2019 ◽  
Vol 22 (2-3) ◽  
pp. 142-153 ◽  
Author(s):  
Alejandra M. Fernández Solarte ◽  
Jhonny Villarroel-Rocha ◽  
César Fernández Morantes ◽  
Maria L. Montes ◽  
Karim Sapag ◽  
...  

2009 ◽  
Vol 14 (4) ◽  
pp. 524-548 ◽  
Author(s):  
Elke Teich ◽  
Mônica Holtz

We report on a project investigating the lexico-grammatical properties of English scientific texts. The goal of this project is to gain insight into the linguistic effects of two scientific disciplines coming into contact with one another (e.g. computer science and linguistics) and possibly forming a merged, new discipline (i.e. computational linguistics). The crucial question to be addressed is how such merged disciplines construe their own, distinctive identity and which kinds of linguistic means they employ to this end. To approach this question, we apply the notion of register, i.e. functional variation or variation according to context of use. On the basis of a corpus of scientific research articles from nine scientific domains, we explore selected lexico-grammatical patterns and assess their contribution to register formation.


Sign in / Sign up

Export Citation Format

Share Document