scholarly journals Inhibition of sodium conductance by cannabigerol contributes to a reduction of neuronal dorsal root ganglion excitability

2021 ◽  
Author(s):  
Mohammad-Reza Ghovanloo ◽  
Mark Estacion ◽  
Peng zhao ◽  
Sulayman Dib-Hajj ◽  
Stephen G Waxman

Cannabigerol (CBG), a non-psychotropic phytocannabinoid, is a precursor for cannabis derivatives, Δ9-tetrahydrocannabinol and cannabidiol (CBD). Like CBD, CBG has been suggested as an analgesic. A previous study reported CBG (10 µM) blocks voltage-gated sodium (Nav) currents in CNS neurons. However, the manner in which CBG inhibits Nav channels, and whether this effect contributes to CBG′s potential analgesic behavior remain unknown. Genetic and functional studies have validated Nav1.7 as an opportune target for analgesic drug development. The efforts to develop therapeutic selective Nav1.7 blockers have been unsuccessful thus far, possibly due to issues in occupancy; drugs have been administered at concentrations many folds above IC50, resulting in loss of isoform-selectivity, and increasing off-target effects. We reasoned that an alternative approach could use compounds possessing 2 important properties: ultra-hydrophobicity and functional selectivity. Hydrophobicity could enhance absorption into neuronal cells especially with local administration. Functional selectivity could reduce the likelihood of side-effects. As CBG is ultra-hydrophobic (cLogD=7.04), we sought to determine whether it also possesses functional selectivity against Nav channels that are expressed in dorsal root ganglion (DRG). We found that CBG is a ~10-fold state-dependent Nav inhibitor (KI-KR: ~2-20 µM) with an average Hill-slope of ~2. We determined that at lower concentrations, CBG predominantly blocks sodium Gmax and slows recovery from inactivation; however, as concentration is increased, CBG also hyperpolarizes Nav inactivation curves. Our modeling and multielectrode array recordings suggest that CBG attenuates DRG excitability, which is likely linked with Nav inhibition. As most Nav1.7 channels are inactivated at DRG resting membrane potential, they are more likely to be inhibited by lower CBG concentrations, suggesting functional selectivity against Nav1.7 compared to other Navs (via Gmax block).

2001 ◽  
Vol 85 (2) ◽  
pp. 630-643 ◽  
Author(s):  
Fuad A. Abdulla ◽  
Peter A. Smith

The spontaneous, ectopic activity in sensory nerves that is induced by peripheral nerve injury is thought to contribute to the generation of “neuropathic” pain in humans. To examine the cellular mechanisms that underlie this activity, neurons in rat L4–L5 dorsal root ganglion (DRG) were first grouped as “large,” “medium,” or “small” on the basis of their size (input capacitance) and action potential (AP) shape. A fourth group of cells that exhibited a pronounced afterdepolarization (ADP) were defined as AD-cells. Whole cell recording was used to compare the properties of control neurons with those dissociated from rats in which the sciatic nerve had been sectioned (“axotomy” group) and with neurons from rats that exhibited self-mutilatory behavior in response to sciatic nerve section (“autotomy” group). Increases in excitability in all types of DRG neuron were seen within 2–7 wk of axotomy. Resting membrane potential (RMP) and the amplitude and duration of the afterhyperpolarization (AHP) that followed the AP were unaffected. Effects of axotomy were greatest in the small, putative nociceptive cells and least in the large cells. Moderate changes were seen in the medium and AD-cells. Compared to control neurons, axotomized neurons exhibited a higher frequency of evoked AP discharge in response to 500-ms depolarizing current injections; i.e., “gain” was increased and accommodation was decreased. The minimum current required to discharge an AP (rheobase) was reduced. There were significant increases in spike width in small cells and significant increases in spike height in small, medium, and AD-cells. The electrophysiological changes promoted by axotomy were intensified in animals that exhibited autotomy; spike height, and spike width were significantly greater than control for all cell types. Under our experimental conditions, spontaneous activity was never encountered in neurons dissociated from animals that exhibited autotomy. Thus changes in the electrical properties of cell bodies alone may not entirely account for injury-induced spontaneous activity in sensory nerves. The onset of autotomy coincided with alterations in the excitability of large, putative nonnociceptive, neurons. Thus large cells from the autotomy group were muchmore excitable than those from the axotomy group, whereas small cells from the autotomy group were only slightly more excitable. This is consistent with the hypothesis that the onset of autotomy is associated with changes in the properties of myelinated fibers. Changes in Ca2+ and K+ channel conductances that contribute to axotomy- and autotomy-induced changes in excitability are addressed in the accompanying paper.


2018 ◽  
Vol 293 (43) ◽  
pp. 16546-16558 ◽  
Author(s):  
Mohammad-Reza Ghovanloo ◽  
Noah Gregory Shuart ◽  
Janette Mezeyova ◽  
Richard A. Dean ◽  
Peter C. Ruben ◽  
...  

Cannabis sativa contains many related compounds known as phytocannabinoids. The main psychoactive and nonpsychoactive compounds are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), respectively. Much of the evidence for clinical efficacy of CBD-mediated antiepileptic effects has been from case reports or smaller surveys. The mechanisms for CBD's anticonvulsant effects are unclear and likely involve noncannabinoid receptor pathways. CBD is reported to modulate several ion channels, including sodium channels (Nav). Evaluating the therapeutic mechanisms and safety of CBD demands a richer understanding of its interactions with central nervous system targets. Here, we used voltage-clamp electrophysiology of HEK-293 cells and iPSC neurons to characterize the effects of CBD on Nav channels. Our results show that CBD inhibits hNav1.1–1.7 currents, with an IC50 of 1.9–3.8 μm, suggesting that this inhibition could occur at therapeutically relevant concentrations. A steep Hill slope of ∼3 suggested multiple interactions of CBD with Nav channels. CBD exhibited resting-state blockade, became more potent at depolarized potentials, and also slowed recovery from inactivation, supporting the idea that CBD binding preferentially stabilizes inactivated Nav channel states. We also found that CBD inhibits other voltage-dependent currents from diverse channels, including bacterial homomeric Nav channel (NaChBac) and voltage-gated potassium channel subunit Kv2.1. Lastly, the CBD block of Nav was temperature-dependent, with potency increasing at lower temperatures. We conclude that CBD's mode of action likely involves 1) compound partitioning in lipid membranes, which alters membrane fluidity affecting gating, and 2) undetermined direct interactions with sodium and potassium channels, whose combined effects are loss of channel excitability.


2006 ◽  
Vol 95 (4) ◽  
pp. 2098-2107 ◽  
Author(s):  
C. Ma ◽  
K. W. Greenquist ◽  
R. H. LaMotte

A laterally herniated disk, spinal stenosis, and various degenerative or traumatic diseases of the spine can sometimes lead to a chronic compression and inflammation of the dorsal root ganglion and chronic abnormal sensations including pain. After a chronic compression of the dorsal root ganglion (CCD) in rats, the somata in the dorsal root ganglion (DRG) become hyperexcitable, and some exhibit ectopic, spontaneous activity (SA). Inflammatory mediators have a potential role in modulating the excitability of DRG neurons and therefore may contribute to the neuronal hyperexcitability after CCD. In this study, an inflammatory soup (IS) consisting of bradykinin, serotonin, prostaglandin E2, and histamine (each 10−6M) was applied topically to the DRG. The responses of DRG neurons were electrophysiologically recorded extracellularly from teased dorsal root fibers or intracellularly from the somata in the intact DRG or from dissociated neurons within 30 h of culture. In all three preparations, IS remarkably increased the discharge rates of SA CCD neurons and evoked discharges in more silent-CCD than control neurons. IS slightly depolarized the resting membrane potential and decreased the current and voltage thresholds of action potential in both intact and dissociated neurons, although the magnitude of depolarization or decrease in action potential threshold was not significantly different between CCD and control. IS-evoked responses were found in a proportion of neurons in each size category including those with and without nociceptive properties. Inflammatory mediators, by increasing the excitability of DRG somata, may contribute to CCD-induced neuronal hyperexcitability and to hyperalgesia and tactile allodynia.


2011 ◽  
Vol 138 (1) ◽  
pp. 59-72 ◽  
Author(s):  
Frank Bosmans ◽  
Michelino Puopolo ◽  
Marie-France Martin-Eauclaire ◽  
Bruce P. Bean ◽  
Kenton J. Swartz

The voltage-activated sodium (Nav) channel Nav1.9 is expressed in dorsal root ganglion (DRG) neurons where it is believed to play an important role in nociception. Progress in revealing the functional properties and pharmacological sensitivities of this non-canonical Nav channel has been slow because attempts to express this channel in a heterologous expression system have been unsuccessful. Here, we use a protein engineering approach to dissect the contributions of the four Nav1.9 voltage sensors to channel function and pharmacology. We define individual S3b–S4 paddle motifs within each voltage sensor, and show that they can sense changes in membrane voltage and drive voltage sensor activation when transplanted into voltage-activated potassium channels. We also find that the paddle motifs in Nav1.9 are targeted by animal toxins, and that these toxins alter Nav1.9-mediated currents in DRG neurons. Our results demonstrate that slowly activating and inactivating Nav1.9 channels have functional and pharmacological properties in common with canonical Nav channels, but also show distinctive pharmacological sensitivities that can potentially be exploited for developing novel treatments for pain.


2005 ◽  
Vol 103 (2) ◽  
pp. 360-376 ◽  
Author(s):  
Damir Sapunar ◽  
Marko Ljubkovic ◽  
Philipp Lirk ◽  
J Bruce McCallum ◽  
Quinn H. Hogan

Background Painful peripheral nerve injury results in disordered sensory neuron function that contributes to the pathogenesis of neuropathic pain. However, the relative roles of neurons with transected axons versus intact adjacent neurons have not been resolved. An essential first step is identification of electrophysiologic changes in these two neuronal populations after partial nerve damage. Methods Twenty days after spinal nerve ligation (SNL), intracellular recordings were obtained from axotomized fifth lumbar (L5) dorsal root ganglion neurons and adjacent, intact L4 neurons, as well as from control neurons and others subjected to sham-SNL surgery. Results Pronounced electrophysiologic changes were seen only in L5 neurons after SNL. Both Aalpha/beta and Adelta neuron types showed increased action potential duration, decreased afterhyperpolarization amplitude and duration, and decreased current threshold for action potential initiation. Aalpha/beta neurons showed resting membrane potential depolarization, and increased repetitive firing during sustained depolarization developed in Adelta neurons. The afterhyperpolarization duration in neurons with C fibers shortened after axotomy. In contrast to the axotomized L5 neurons, neighboring L4 neurons showed no changes in action potential duration, afterhyperpolarization dimensions, or excitability after SNL. Depolarization rate (dV/dt) increased after SNL in L4 Aalpha/beta and Adelta neurons but decreased in L5 neurons. Time-dependent rectification during hyperpolarizing current injection (sag) was greater after SNL in Aalpha/beta L4 neurons compared with L5. Sham-SNL surgery produced only a decreased input resistance in Aalpha/beta neurons and a decreased conduction velocity in medium-sized cells. In the L5 ganglion after axotomy, a novel set of neurons, consisting of 24% of the myelinated population, exhibited long action potential durations despite myelinated neuron conduction velocities, particularly depolarized resting membrane potential, low depolarization rate, and absence of sag. Conclusions These findings indicate that nerve injury-induced electrical instability is restricted to axotomized neurons and is absent in adjacent intact neurons.


Author(s):  
Sampurna Chakrabarti ◽  
Deepak R Jadon ◽  
David C Bulmer ◽  
Ewan St. John Smith

Abstract Objectives Knee OA is a leading global cause of morbidity. This study investigates the effects of knee SF from patients with OA on the activity of dorsal root ganglion sensory neurons that innervate the knee (knee neurons) as a novel translational model of disease-mediated nociception in human OA. Methods Dissociated cultures of mouse knee neurons were incubated overnight or acutely stimulated with OA-SF (n = 4) and fluid from healthy donors (n = 3, Ctrl-SF). Electrophysiology and Ca2+-imaging determined changes in electrical excitability and transient receptor potential channel function, respectively. Results Incubation with OA-SF induced knee neuron hyperexcitability compared to Ctrl-SF: the resting membrane potential significantly increased (F(2, 92) = 5.6, P = 0.005, ANOVA) and the action potential threshold decreased (F(2, 92) = 8.8, P = 0.0003, ANOVA); TRPV1 (F(2, 445) = 3.7, P = 0.02) and TRPM8 (F(2, 174) = 11.1, P < 0.0001, ANOVA) channel activity also increased. Acute application of Ctrl-SF and OA-SF increased intracellular Ca2+ concentration via intra- and extracellular Ca2+ sources. Conclusion Human OA-SF acutely activated knee neurons and induced hyperexcitability indicating that mediators present in OA-SF stimulate sensory nerve activity and thereby give rise to knee pain. Taken together, this study provides proof-of-concept for a new method to study the ability of mediators present in joints of patients with arthritis to stimulate nociceptor activity and hence identify clinically relevant drug targets for treating knee pain.


2017 ◽  
Vol 117 (4) ◽  
pp. 1702-1712 ◽  
Author(s):  
Mark Estacion ◽  
Stephen G. Waxman

The Nav1.7 sodium channel is preferentially expressed within dorsal root ganglion (DRG) and sympathetic ganglion neurons. Gain-of-function mutations that cause the painful disorder inherited erythromelalgia (IEM) shift channel activation in a hyperpolarizing direction. When expressed within DRG neurons, these mutations produce a depolarization of resting membrane potential (RMP). The biophysical basis for the depolarized RMP has to date not been established. To explore the effect on RMP of the shift in activation associated with a prototypical IEM mutation (L858H), we used dynamic-clamp models that represent graded shifts that fractionate the effect of the mutation on activation voltage dependence. Dynamic-clamp recording from DRG neurons using a before-and-after protocol for each cell made it possible, even in the presence of cell-to-cell variation in starting RMP, to assess the effects of these graded mutant models. Our results demonstrate a nonlinear, progressively larger effect on RMP as the shift in activation voltage dependence becomes more hyperpolarized. The observed differences in RMP were predicted by the “late” current of each mutant model. Since the depolarization of RMP imposed by IEM mutant channels is known, in itself, to produce hyperexcitability of DRG neurons, the development of pharmacological agents that normalize or partially normalize activation voltage dependence of IEM mutant channels merits further study. NEW & NOTEWORTHY Inherited erythromelalgia (IEM), the first human pain disorder linked to a sodium channel, is widely regarded as a genetic model of neuropathic pain. IEM is produced by Nav1.7 mutations that hyperpolarize activation. These mutations produce a depolarization of resting membrane potential (RMP) in dorsal root ganglion neurons. Using dynamic clamp to explore the effect on RMP of the shift in activation, we demonstrate a nonlinear effect on RMP as the shift in activation voltage dependence becomes more hyperpolarized.


1997 ◽  
Vol 78 (5) ◽  
pp. 2790-2794 ◽  
Author(s):  
Jun-Ming Zhang ◽  
David F. Donnelly ◽  
Xue-Jun Song ◽  
Robert H. Lamotte

Zhang, Jun-Ming, David F. Donnelly, Xue-Jun Song, and Robert H. LaMotte. Axotomy increases the excitability of dorsal root ganglion cells with unmyelinated axons. J. Neurophysiol. 78: 2790–2794, 1997. To better understand the neuronal mechanism of neuropathic pain, the effect of axotomy on the excitability of dorsal root ganglion (DRG) cells with unmyelinated axons (C cells) was investigated. Whole cell patch-clamp recordings were performed on intact DRG cells with intact axons or with axons transected 7–12 days earlier. C cells were identified by 1) soma size, 2) action potential morphology, 3) conduction velocity, and 4) in some cases, injection of Fast Blue into the injured nerve fibers. Axotomy reduced (more negative) action potential threshold but did not significantly change resting membrane potential, action potential duration, or maximal depolarization rate. Axotomy significantly increased the peak sodium current measured under voltage-clamp conditions. In Fast Blue–labeled (injured) cells, thetetrodotoxin (TTX)-sensitive current was enhanced while the TTX-resistant current was reduced. These results suggest that axotomy increased the excitability of C cells, possibly because of a preferential increase in expression of TTX-sensitive sodium currents.


Sign in / Sign up

Export Citation Format

Share Document