scholarly journals Volumetric ultrasound localization microscopy of the whole brain microvasculature

2021 ◽  
Author(s):  
Baptiste Heiles ◽  
Arthur Chavignon ◽  
Antoine Bergel ◽  
Vincent Hingot ◽  
Hicham Serroune ◽  
...  

Technologies to visualize whole organs across scales in vivo are essential for our understanding of biology in health and disease. To date, only post-mortem techniques such as perfused computed tomography scanning or optical microscopy of cleared tissues achieve cellular resolution across entire organs and imaging methods with equal performance in living mammalian organs have yet to be developed. Recently, 2D ultrasound localization microscopy has successfully mapped the fine-scale vasculature of various organs down to a 10 μm precision. However, reprojection issues and out-of-plane motion prevent complex blood flow quantification and fast volumetric imaging of whole organs. Here, we demonstrate for the first time in vivo volumetric ultrasound localization microscopy mapping of the rodent brain vasculature. We developed a complete methodological pipeline that includes specific surgery, a dedicated 3D ultrasound acquisition sequence, localization and tracking algorithms, motion correction and realignment, as well as the post-processing quantification of cerebral blood flow. We illustrate the power of this approach, by mapping the whole rat brain vasculature at a resolution of 12 μm, revealing mesoscopic to macroscopic vascular architectures and cerebral blood flows ranging from 1 to 100 mm/s. Our results pave the way to the investigation of in vivo vascular processes across the mammalian brain in health and disease, in a wide range of contexts and models.

2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Holly R. Chinnery ◽  
Kate E. Keller

Cellular communication is an essential process for the development and maintenance of all tissues including the eye. Recently, a new method of cellular communication has been described, which relies on formation of tubules, called tunneling nanotubes (TNTs). These structures connect the cytoplasm of adjacent cells and allow the direct transport of cellular cargo between cells without the need for secretion into the extracellular milieu. TNTs may be an important mechanism for signaling between cells that reside long distances from each other or for cells in aqueous environments, where diffusion-based signaling is challenging. Given the wide range of cargoes transported, such as lysosomes, endosomes, mitochondria, viruses, and miRNAs, TNTs may play a role in normal homeostatic processes in the eye as well as function in ocular disease. This review will describe TNT cellular communication in ocular cell cultures and the mammalian eye in vivo, the role of TNTs in mitochondrial transport with an emphasis on mitochondrial eye diseases, and molecules involved in TNT biogenesis and their function in eyes, and finally, we will describe TNT formation in inflammation, cancer, and stem cells, focusing on pathological processes of particular interest to vision scientists.


2021 ◽  
Author(s):  
Hatim Belgharbi ◽  
Jonathan Poree ◽  
Rafat Damseh ◽  
Vincent Perrot ◽  
Patrick Delafontaine-Martel ◽  
...  

The resolution of 3D Ultrasound Localization Microscopy (ULM) is determined by acquisition parameters such as frequency and transducer geometry but also by microbubble (MB) concentration, which is also linked to the total acquisition time needed to sample the vascular tree at different scales. In this study, we introduce a novel 3D anatomically- and physiologically-realistic ULM simulation framework based on two-photon microscopy (2PM) and in-vivo MB perfusion dynamics. As a proof of concept, using metrics such as MB localization error, MB count and network filling, we could quantify the effect of MB concentration and PSF volume by varying probe transmit frequency (3-15 MHz). We find that while low frequencies can achieve sub-wavelength resolution as predicted by theory, they are also associated with prolonged acquisition times to map smaller vessels, thus limiting effective resolution. A linear relationship was found between maximal MB concentration and inverse point spread function (PSF) volume. Since inverse PSF volume roughly scales cubically with frequency, the reconstruction of the equivalent of 10 minutes at 15 MHz would require hours at 3 MHz. We expect that these findings can be leveraged to achieve effective reconstruction and serve as a guide for choosing optimal MB concentrations in ULM.


2019 ◽  
Vol 146 (4) ◽  
pp. 3031-3031
Author(s):  
Chloé Bourquin ◽  
Jonathan Porée ◽  
Frédéric Lesage ◽  
Jean Provost

1975 ◽  
Vol 17 (3) ◽  
pp. 669-681
Author(s):  
K.W. Farrell ◽  
R.G. Burns

It has been demonstrated that the in vitro assembly of microtubules from Chlamydomonas preparations does not occur under a wide range of conditions, including those efficacious for mammalian brain tubulin. This incompetence of Chlamydomonas extracts to form microtubules is independent of the tubulin concentration, the presence of added nucleotides or an added seed, temperature, or the concentration of divalent cation. However, an amorphous aggregate was observed under certain conditions, who composition was mainly tubulin. The in vitro reassembly of microtubules in gerbil brain extracts is inhibited by Chlamydomonas preparations. Fractionation of the Chlamydomonas extracts by column chromatography suggests that the inhibitory component is Chlamydomonas tubulin itself. The mechanism of this inhibition is unknown, but reassembly experiments indicate that the 2 types of tubulins cannot copolymerize. We suggest that the Chlamydomonas tubulin, derived from a cytoplasmic pool, requires to be activated prior to its in vivo polymerization into microtubules.


1995 ◽  
Vol 268 (1) ◽  
pp. F175-F178 ◽  
Author(s):  
W. J. Welch ◽  
X. Deng ◽  
H. Snellen ◽  
C. S. Wilcox

This study validates the accuracy of miniature ultrasonic transit-time flow probes for measuring renal blood flow (RBF) in the rat. Probes for 1-mm and 2-mm vessels were calibrated ex vivo using excised arteries at varying flow rates and hematocrit (Hct). Correlation between measured and true flow rates for the 2-mm probe were identical (r = 1.0) at both normal and subnormal Hct values. Correlation for the 1-mm probe was high (r = 0.994) at normal Hct, but varied at both high flow rates and subnormal Hct values. In vivo correlation of RBF measurements using the 1-mm probe with the clearance and extraction of p-aminohippuric acid showed a high correlation (r = 0.84; n = 72, P < 0.0001) over a wide range of flow rates (0.5-21 ml/min) and Hct (36-74%). Zero flow levels remained steady, averaging -0.2 +/- 0.2 ml/min during occlusion in the living animal and -0.1 +/- 0.3 ml/min after exsanguination. This study shows that the ultrasonic transit-time flowmeter (1-mm and 2-mm probes) is a reasonably accurate and reliable method with which to measure RBF in the anesthetized, acute-instrumented rat.


Sign in / Sign up

Export Citation Format

Share Document