Association Between Action Video Game Playing Experience and Visual Search in Real-life Multisensory scenes

2021 ◽  
Author(s):  
Mohammad Hamzeloo ◽  
Daria Kvasova ◽  
Salvador Soto-Faraco

Prior studies investigating the effects of playing action video games on attentional control have demonstrated improvements on a variety of basic psychophysical tasks. However, as of yet, there is little evidence indicating that the cognitive benefits of playing action video games generalize to naturalistic multisensory scenes - a fundamental characteristic of our natural, everyday life environments. The present study addressed the generalization of attentional control enhancement due to AVGP experience to real-life like scenarios by comparing the performance of action video-game players (AVGPs) with non-players (NVGPs) on a visual search task using naturalistic, dynamic audio-visual scenes. To this end, a questionnaire collecting data on gaming habits and sociodemographic data as well as a visual search task was administered online to a gender-balanced sample of 60 participants of age 18 to 30 years. According to the standard hypothesis, AVGPs outperformed NVGPs in the search task overall, showing faster reaction times without sacrificing accuracy. In addition, in replication of previous findings, semantically congruent cross-modal cues benefited performance overall. However, according to our results, despite the overall advantage in search, and the multisensory congruence benefit, AVGPs did not exploit multisensory cues more efficiently than NVGPs. Exploratory analyses with gender as a variable indicated that the advantage of AVG experience to both genders should be done with caution.

2021 ◽  
Vol 11 (2) ◽  
pp. 171 ◽  
Author(s):  
Sara Bertoni ◽  
Sandro Franceschini ◽  
Giovanna Puccio ◽  
Martina Mancarella ◽  
Simone Gori ◽  
...  

Reading acquisition is extremely difficult for about 5% of children because they are affected by a heritable neurobiological disorder called developmental dyslexia (DD). Intervention studies can be used to investigate the causal role of neurocognitive deficits in DD. Recently, it has been proposed that action video games (AVGs)—enhancing attentional control—could improve perception and working memory as well as reading skills. In a partial crossover intervention study, we investigated the effect of AVG and non-AVG training on attentional control using a conjunction visual search task in children with DD. We also measured the non-alphanumeric rapid automatized naming (RAN), phonological decoding and word reading before and after AVG and non-AVG training. After both video game training sessions no effect was found in non-alphanumeric RAN and in word reading performance. However, after only 12 h of AVG training the attentional control was improved (i.e., the set-size slopes were flatter in visual search) and phonological decoding speed was accelerated. Crucially, attentional control and phonological decoding speed were increased only in DD children whose video game score was highly efficient after the AVG training. We demonstrated that only an efficient AVG training induces a plasticity of the fronto-parietal attentional control linked to a selective phonological decoding improvement in children with DD.


2020 ◽  
Author(s):  
Nir Shalev ◽  
Sage Boettcher ◽  
Hannah Wilkinson ◽  
Gaia Scerif ◽  
Anna C. Nobre

It is believed that children have difficulties in guiding attention while facing distraction. However, developmental accounts of spatial attention rely on traditional search designs using static displays. In real life, dynamic environments can embed regularities that afford anticipation and benefit performance. We developed a dynamic visual-search task to test the ability of children to benefit from spatio-temporal regularities to detect goal-relevant targets appearing within an extended dynamic context amidst irrelevant distracting stimuli. We compared children and adults in detecting predictable vs. unpredictable targets fading in and out among competing distracting stimuli. While overall search performance was poorer in children, both groups detected more predictable targets. This effect was confined to task-relevant information. Additionally, we report how predictions are related to individual differences in attention. Altogether, our results indicate a striking capacity of prediction-led guidance towards task-relevant information in dynamic environments, refining traditional views about poor goal-driven attention in childhood.


2007 ◽  
Vol 18 (1) ◽  
pp. 88-94 ◽  
Author(s):  
C.S. Green ◽  
D. Bavelier

Playing action video games enhances several different aspects of visual processing; however, the mechanisms underlying this improvement remain unclear. Here we show that playing action video games can alter fundamental characteristics of the visual system, such as the spatial resolution of visual processing across the visual field. To determine the spatial resolution of visual processing, we measured the smallest distance a distractor could be from a target without compromising target identification. This approach exploits the fact that visual processing is hindered as distractors are brought close to the target, a phenomenon known as crowding. Compared with nonplayers, action-video-game players could tolerate smaller target-distractor distances. Thus, the spatial resolution of visual processing is enhanced in this population. Critically, similar effects were observed in non-video-game players who were trained on an action video game; this result verifies a causative relationship between video-game play and augmented spatial resolution.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xia Wu ◽  
Ying Jiang ◽  
Yunpeng Jiang ◽  
Guodong Chen ◽  
Ying Chen ◽  
...  

Attention can help an individual efficiently find a specific target among multiple distractors and is proposed to consist of three functions: alerting, orienting, and executive control. Action video games (AVGs) have been shown to enhance attention. However, whether AVG can affect the attentional functions across different modalities remains to be determined. In the present study, a group of action video game players (AVGPs) and a group of non-action video game players (NAVGPs) selected by a video game usage questionnaire successively participated in two tasks, including an attention network task-visual version (ANT-V) and an attention network task-auditory version (ANT-A). The results indicated that AVGPs showed an advantage in orienting under the effects of conflicting stimuli (executive control) in both tasks, and NAVGPs may have a reduced ability to disengage when conflict occurs in visual task, suggesting that the AVGs can improve guidance toward targets and inhibition of distractors with the function of executive control. AVGPs also showed more correlations among attentional functions. Importantly, the alerting functions of AVGPs in visual and auditory tasks were significantly related, indicating that the experience of AVGs could help us to generate a supramodal alerting effect across visual and auditory modalities.


2018 ◽  
Vol 71 (5) ◽  
pp. 1033-1039 ◽  
Author(s):  
Daniela Carmen Trisolini ◽  
Marco Alessandro Petilli ◽  
Roberta Daini

Over the past few years, an increasing number of studies have shown that playing action video games can have positive effects on tasks that involve attention and visuo-spatial cognition (e.g., visual search, enumeration tasks, tracking multiple objects). Although playing action video games can improve several cognitive functions, the intensive interaction with the exciting, challenging, intrinsically stimulating and perceptually appealing game environments may adversely affect other functions, including the ability to maintain attention when the level of stimulation is not as intense. This study investigated whether a relationship existed between action video gaming and sustained attention performance in a sample of 45 Italian teenagers. After completing a questionnaire about their video game habits, participants were divided into Action Video Game Player (AVGP) and Non–Action Video Game Player (NAVGP) groups and underwent cognitive tests. The results confirm previous findings of studies of AVGPs as they had significantly enhanced performance for instantly enumerating a set of items. Nevertheless, we found that the drop in performance over time, typical of a sustained attention task, was significantly greater in the AVGP compared with the NAVGP group. This result is consistent with our hypothesis and demonstrates a negative effect of playing action video games.


Author(s):  
Mengxin He ◽  
Lin-Xuan Xu ◽  
Chiang-shan R. Li ◽  
Zihan Liu ◽  
Jiaqi Hu ◽  
...  

Objective Do real-time strategy (RTS) video gamers have better attentional control? To examine this issue, we tested experienced versus inexperienced RTS video gamers on multi-object tracking tasks (MOT) and dual-MOT tasks with visual or auditory secondary tasks (dMOT). We employed a street-crossing task with a visual working memory task as a secondary task in a virtual reality (VR) environment to examine any generalized attentional advantage. Background Similar to action video games, RTS video games require players to switch attention between multiple visual objects and views. However, whether the attentional control advantage is limited by sensory modalities or generalizes to real-life tasks remains unclear. Method In study 1, 25 RTS video game players (SVGP) and 25 non-video game players (NVGP) completed the MOT task and two dMOT tasks. In study 2, a different sample with 25 SVGP and 25 NVGP completed a simulated street-crossing task with the visual dual task in a VR environment. Results After controlling the effects of the speed-accuracy trade-off, SVGP showed better performance than NVGP in the MOT task and the visual dMOT task, but SVGP did not perform better in either the auditory dMOT task or the street-crossing task. Conclusion RTS video gamers had better attentional control in visual computer tasks, but not in the auditory tasks and the VR tasks. Attentional control benefits associated with RTS video game experience may be limited by sensory modalities, and may not translate to performance benefits in real-life tasks.


Author(s):  
Robert West ◽  
Edward L. Swing ◽  
Craig A. Anderson ◽  
Sara Prot

First person shooter or action video games represent one of the most popular genres within the gaming industry. Studies reveal that action gaming experience leads to enhancements of visuo-spatial processing. In contrast, some correlational evidence reveals that experience with action video games may be associated with reduced proactive cognitive control. The two primary goals of the current study were to test the causal nature of the effect of action gaming on proactive cognitive control and to examine whether an increase in visuo-spatial processing and a decrease in proactive cognitive control arise from the same amount of experience playing an action video game. Participants completed tasks measuring visuo-spatial processing and cognitive control before and after 10 practice sessions involving one of three video games or were assigned to a no gaming experience control group. The data revealed the typical increase in visuo-spatial processing and a decrease in proactive, but not reactive, cognitive control following action game training. The sizes of these two training effects were similar in magnitude, but interpretation of the effects was constrained by baseline differences between the four groups of subjects. The possibility of a causal effect of action gaming on proactive cognitive control is interesting within the context of correlational evidence linking greater action gaming experience to reduced cognitive control, poor decision making, and increased impulsivity.


2021 ◽  
Author(s):  
Akshay Anil Dixit ◽  
Divya Sinha ◽  
Hemalatha Ramachandran

With the advancements of computer technology and accessible internet, playing video games has become immensely popular across all age groups. Increasing research talks about the cognitive benefits of Video Games. At the same time, video games are stereotyped as an activity for the lazy and unproductive. Within this backdrop, our study aims to understand the effect of video games on Executive control (Visual Scanning and Visual Perception), Aggression, and Gaming Motivation. Twenty non-gamers were selected and divided into two groups: Action Video Game Players (AVGP) and Non-Action Video Game Players NAVGP). We used two computerized tests: Gabor Orientation Identification Test and Visual Scanning Test (to assess visual perception and visual scanning, respectively) and two questionnaires (to assess aggression and gaming motivation). We found an improvement in visual perception as well as visual scanning following video game training in AVGPs. Interestingly, aggression did not increase with an increase in video game exposure. We also found insignificant changes in gaming motivation after the training, except for self-gratification motives. Cognitive improvements do not relate to action video games alone, but non-action video games also show promising results to enhance cognition. With better timed and controlled training with video games, aggression as a prospective consequence of video game exposure can also be controlled. We propose targeted video game training as an approach to enhance cognition in non-gamers.


Sign in / Sign up

Export Citation Format

Share Document