scholarly journals Differential immunogenicity of homologous versus heterologous boost in Ad26.COV2.S vaccine recipients.

Author(s):  
Nicholas Kim Huat Khoo ◽  
Joey Ming Er Lim ◽  
Upkar Singh Gill ◽  
Ruklanthi de Alwis ◽  
Nicole Tan ◽  
...  

Protection offered by COVID-19 vaccines wanes over time, requiring an evaluation of different boosting strategies to revert such a trend and enhance the quantity and quality of Spike-specific humoral and cellular immune responses. These immunological parameters in homologous or heterologous vaccination boosts have thus far been studied for mRNA and ChAdOx1 nCoV-19 vaccines, but knowledge on individuals who received a single dose of Ad26.COV2.S is lacking. We studied Spike-specific humoral and cellular immunity in Ad26.COV2.S vaccinated individuals (n=55) who were either primed with Ad26.COV2.S only (n=13), or boosted with a homologous (Ad26.COV2.S, n=28) or heterologous (BNT162b2, n=14) second dose. We compared our findings with the results found in individuals vaccinated with a single (n=16) or double (n=44) dose of BNT162b2. We observed that a strategy of heterologous vaccination enhanced the quantity and breadth of both, Spike-specific humoral and cellular immunity in Ad26.COV2.S vaccinated. In contrast, the impact of homologous boost was quantitatively minimal in Ad26.COV2.S vaccinated and Spike-specific antibodies and T cells were narrowly focused to the S1 region. Although a direct association between quantity and quality of immunological parameters and in vivo protection has not been demonstrated, the immunological features of Spike-specific humoral and cellular immune responses support the utilization of a heterologous strategy of vaccine boost in individuals who received Ad26.COV2.S vaccination.

Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1076
Author(s):  
Stanisław Milewski ◽  
Przemysław Sobiech ◽  
Justyna Błażejak-Grabowska ◽  
Roman Wójcik ◽  
Katarzyna Żarczyńska ◽  
...  

The aim of this study was to evaluate the effects of a long-acting selenium (Se) preparation administered to sheep. The experiment was conducted on 30 dams and 36 lambs divided into three equal groups of 10 dams and 12 lambs each: Control—C, and two experimental groups—E (Se administered to pregnant ewes) and EI (Se administered directly to lambs after the colostral period). The Se preparation (Barium Selenate Injection, BVP Animal Care, 50 mg/mL) was administered by injection at 1 mL/50 kg (1 mg Se/kg) body weight (BW) to group E ewes in the third month of pregnancy (between 70 and 90 days) and to group EI lambs between 4 and 7 days of age. The following parameters were determined: Se concentration in the blood of ewes, milk yield, milk composition, Se concentration in milk; hematological, biochemical, and immunological parameters and Se concentration in the blood of lambs; growth rate and in vivo measurements of lean meat and fat content in lambs. Barium selenate significantly improved the Se status of dams and lambs, regardless of whether it was administered to pregnant ewes or directly to lambs in the first week of their life. The milk of ewes receiving the Se preparation was characterized by higher concentrations of fat and dry matter. The Se preparation induced significant changes in immunological parameters, thus enhancing defense mechanisms in lambs. The Se preparation exerted more stimulatory effects on humoral and cellular immune responses when administered directly to lambs after the colostral period (group EI) than to pregnant ewes (group E). The results of this study indicate that the long-acting Se preparation delivers benefits to sheep by boosting their immunity and, therefore, improving performance.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1408
Author(s):  
Qiao Li ◽  
Zhihua Liu ◽  
Yi Liu ◽  
Chen Liang ◽  
Jiayi Shu ◽  
...  

TFPR1 is a novel adjuvant for protein and peptide antigens, which has been demonstrated in BALB/c mice in our previous studies; however, its adjuvanticity in mice with different genetic backgrounds remains unknown, and its adjuvanticity needs to be improved to fit the requirements for various vaccines. In this study, we first compared the adjuvanticity of TFPR1 in two commonly used inbred mouse strains, BALB/c and C57BL/6 mice, in vitro and in vivo, and demonstrated that TFPR1 activated TLR2 to exert its immune activity in vivo. Next, to prove the feasibility of TFPR1 acting as a major component of combined adjuvants, we prepared a combined adjuvant, TF–Al, by formulating TFPR1 and alum at a certain ratio and compared its adjuvanticity with that of TFPR1 and alum alone using OVA and recombinant HBsAg as model antigens in both BALB/c and C57BL/6 mice. Results showed that TFPR1 acts as an effective vaccine adjuvant in both BALB/c mice and C57BL/6 mice, and further demonstrated the role of TLR2 in the adjuvanticity of TFPR1 in vivo. In addition, we obtained a novel combined adjuvant, TF–Al, based on TFPR1, which can augment antibody and cellular immune responses in mice with different genetic backgrounds, suggesting its promise for vaccine development in the future.


2004 ◽  
Vol 53 (9) ◽  
pp. 825-834 ◽  
Author(s):  
Jing Ye ◽  
Guang-Sheng Chen ◽  
Hong-Ping Song ◽  
Zeng-Shan Li ◽  
Ya-Yu Huang ◽  
...  

Vaccine ◽  
2007 ◽  
Vol 25 (36) ◽  
pp. 6635-6645 ◽  
Author(s):  
Carlota Dobaño ◽  
Georg Widera ◽  
Dietmar Rabussay ◽  
Denise L. Doolan

2015 ◽  
Vol 90 (1) ◽  
pp. 332-344 ◽  
Author(s):  
Michela Brazzoli ◽  
Diletta Magini ◽  
Alessandra Bonci ◽  
Scilla Buccato ◽  
Cinzia Giovani ◽  
...  

ABSTRACTSeasonal influenza is a vaccine-preventable disease that remains a major health problem worldwide, especially in immunocompromised populations. The impact of influenza disease is even greater when strains drift, and influenza pandemics can result when animal-derived influenza virus strains combine with seasonal strains. In this study, we used the SAM technology and characterized the immunogenicity and efficacy of a self-amplifying mRNA expressing influenza virus hemagglutinin (HA) antigen [SAM(HA)] formulated with a novel oil-in-water cationic nanoemulsion. We demonstrated that SAM(HA) was immunogenic in ferrets and facilitated containment of viral replication in the upper respiratory tract of influenza virus-infected animals. In mice, SAM(HA) induced potent functional neutralizing antibody and cellular immune responses, characterized by HA-specific CD4 T helper 1 and CD8 cytotoxic T cells. Furthermore, mice immunized with SAM(HA) derived from the influenza A virus A/California/7/2009 (H1N1) strain (Cal) were protected from a lethal challenge with the heterologous mouse-adapted A/PR/8/1934 (H1N1) virus strain (PR8). Sera derived from SAM(H1-Cal)-immunized animals were not cross-reactive with the PR8 virus, whereas cross-reactivity was observed for HA-specific CD4 and CD8 T cells. Finally, depletion of T cells demonstrated that T-cell responses were essential in mediating heterologous protection. If the SAM vaccine platform proves safe, well tolerated, and effective in humans, the fully synthetic SAM vaccine technology could provide a rapid response platform to control pandemic influenza.IMPORTANCEIn this study, we describe protective immune responses in mice and ferrets after vaccination with a novel HA-based influenza vaccine. This novel type of vaccine elicits both humoral and cellular immune responses. Although vaccine-specific antibodies are the key players in mediating protection from homologous influenza virus infections, vaccine-specific T cells contribute to the control of heterologous infections. The rapid production capacity and the synthetic origin of the vaccine antigen make the SAM platform particularly exploitable in case of influenza pandemic.


2021 ◽  
Vol 33 (10) ◽  
pp. 529-540
Author(s):  
Kun Xu ◽  
Lianpan Dai ◽  
George F Gao

Abstract Coronavirus disease 2019 (COVID-19) has caused millions of deaths, and serious consequences to public health, economies and societies. Rapid responses in vaccine development have taken place since the isolation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the release of the viral genome sequence. By 21 May 2021, 101 vaccines were under clinical trials, and published data were available for 18 of them. Clinical study results from some vaccines indicated good immunogenicity and acceptable reactogenicity. Here, we focus on these 18 vaccines that had published clinical data to dissect the induced humoral and cellular immune responses as well as their safety profiles and protection efficacy.


1988 ◽  
pp. 185-196
Author(s):  
Anne Durandy ◽  
Alain Fischer ◽  
Edouard Drouhet ◽  
Claude Griscelli

Sign in / Sign up

Export Citation Format

Share Document