scholarly journals From the origin and molecular diversity of the amastins, to the origin and diversity of intracellular parasitism from human Trypanosomatids

2021 ◽  
Author(s):  
Alejandro Padilla

The large families of amastins from Leishmania donovani, L. infantum, L. major, L. braziliensis and Trypanosoma cruzi are strongly associated with the evolution of intracellular parasitism of rich cells in human MHC.1 molecules such as the macrophages, dendritic cells, and Langerhans cells by these parasites, recognize the MHC-1 molecules as host receptor. The internalization and transport of the paraste in the cytoplas of infected cell is facilitated by the MHC-1 recycle and endosome formation drag and transport the parasite in the cytoplasm of infected cell. The microbody amastins participate as coreceptor potency the infection, the tropism of L. major and L. braziliensis by the cells from the skin is facilitated by two molecular interactions, the first molecular interaction is faclitated by the amastins interact the human MHC-1 molecules, and the second molecular interaction is facilitated by the numerous microbody amastins; which also participate in the biogenesis of the small prasitophorous vcuole from L. major, and large parasitophorous vacuole from L. braziliensis. All amastins from these parasites developed deactivation domains, in different grade L. donovani develop an amastin surface coat specialized in deactivation of infected macrophages heavily glycosylated developed 38 amastins with 38 glycosylation Asp. N-Glycosylation sites and 45 N-glucosamina glycosylation sites, whereas L. infantum, L. major and L. braziliensis developed one half of glycosylated amastins in asparagine N-glycosylation sites, and T. cruzi did not developed none glycosylated amastin. The amastins surface coat from L. donovani is rich in phosphorylation sites, developed 45 amastins with 45 casein kinase II phosphorylations sites, and 48 amastins with 48 protein kinase phosphorylation sites. L. infantum, L. braziliensis, and T. cruzi developed 32, 42, and 8 amastins, with 94, 114, 21 casein kinase II phosphorylation sites; in similar way developed 35, 38, 11 amastins with 89, 78, and 22 protein kinase phosphorylation sites. The family of amastins from L. donovani develop 137 phosphoserines. and 128 phosphothreonine, L. major developed 14 phosphoserine and 4 phosphothreonine; L. infantum 1 phophoserine and 7 phosphothreonine; L. braziliensis did not developed phosphoserine and phosphothreonine and T. cruzi 4 phosphoserine and 4 phosphothreonine. The results show that amastin surface coat is equiped with numerous phosphorylations sites atractive for phosphohrylases from the infected host contribute with the dephosphorylation and deactivation of infectetd host cells. The amastins from L. major develop a membrane amastin with laminin G domain, which can interact with the collagen and heparin sulfate proteoglycan sites from the extracellular matrix of the skin tissue. Furthermore develop 14 amastins with tyrosine sulfation site, evade the activation of receptor of chemokines and the activation of the immune response by chemokines. There is an alternative mechanism of polarization of the immune response from protective TH1 to non protective TH2. The parasite nutrition is mediated by amastins that dissimilate the MHC-1 molecules and other subsets of proteins, the dissimilation products can be translocated through of the parasite cell membrane and employed as nutrient source.

1994 ◽  
Vol 25 (3-4) ◽  
pp. 297-304 ◽  
Author(s):  
Li-Hsien Lin ◽  
Linda J. Van Eldik ◽  
Neil Osheroff ◽  
Jeanette J. Norden

1996 ◽  
Vol 227 (1) ◽  
pp. 102-109 ◽  
Author(s):  
Shigeyoshi Harada ◽  
Atsushi Karino ◽  
Yoshihito Shimoyama ◽  
Fazel Shamsa ◽  
Kenzo Ohtsuki

1995 ◽  
Vol 108 (2) ◽  
pp. 779-787 ◽  
Author(s):  
I. Vancurova ◽  
T.M. Paine ◽  
W. Lou ◽  
P.L. Paine

Nucleoplasmin is a phosphorylated nuclear-accumulating protein. We report herein that the kinetics of its cytoplasm-->nucleus transport are affected by its degree of phosphorylation. Therefore, we sought to identify any protein kinase which specifically associates with nucleoplasmin. We discovered that nucleoplasmin co-isolates by two independent methods (immunoabsorption and chromatography) in a complex including a kinase which phosphorylates nucleoplasmin. The co-purifying kinase is casein kinase II-like because: (i) it phosphorylates casein; (ii) its phospho-transferase activity can be competed out by GTP; (iii) it is stimulated by polylysine; and (iv) it is inhibited by heparin. Moreover, a polyclonal antibody to the alpha (38 kDa) and alpha' (36 kDa) catalytic subunits of casein kinase II specifically recognizes 38 and 36 kDa polypeptides in the nucleoplasmin-complex, and a specific inhibitor of casein kinase II inhibits nucleoplasmin's nuclear transport. Additionally, we found that phosphorylation of nucleoplasmin by its associated casein kinase II is strongly inhibited by histones and that, in addition to nucleoplasmin, another protein (p100) in the nucleoplasmin-complex is phosphorylated by casein kinase II.


1997 ◽  
Vol 110 (17) ◽  
pp. 2013-2025 ◽  
Author(s):  
L. Renzi ◽  
M.S. Gersch ◽  
M.S. Campbell ◽  
L. Wu ◽  
S.A. Osmani ◽  
...  

The MPM-2 antibody labels mitosis-specific and cell cycle-regulated phosphoproteins. The major phosphoproteins of mitotic chromosomes recognized by the MPM-2 antibody are DNA topoisomerase II (topoII) alpha and beta. In immunofluorescence studies of PtK1 cytoskeletons, prepared by detergent lysis in the presence of potent phosphatase inhibitors, the MPM-2 antibody labels phosphoproteins found at kinetochores, chromosome arms, midbody and spindle poles of mitotic cells. In cells extracted without phosphatase inhibitors, labeling of the MPM-2 antibodies at kinetochores is greatly diminished. However, in cytoskeletons this epitope can be regenerated through the action of kinases stably bound at the kinetochore. Various kinase inhibitors were tested in order to characterize the endogenous kinase responsible for these phosphorylations. We found that the MPM-2 epitope will not rephosphorylate in the presence of the broad specificity kinase inhibitors K-252a, staurosporine and 2-aminopurine. Several other inhibitors had no effect on the rephosphorylation indicating that the endogenous MPM-2 kinase at kinetochores is not p34cdc2, casein kinase II, MAP kinase, protein kinase A or protein kinase C. The addition of N-ethylmaleimide inactivated the endogenous kinetochore kinase; this allowed testing of several purified kinases in the kinetochore rephosphorylation assay. Active p34cdc2-cyclin B, casein kinase II and MAP kinase could not generate the MPM-2 phosphoepitope. However, bacterially expressed NIMA from Aspergillus and ultracentrifuged mitotic HeLa cell extract were able to catalyze the rephosphorylation of the MPM-2 epitope at kinetochores. Furthermore, fractionation of mitotic HeLa cell extract showed that kinases that create the MPM-2 epitope at kinetochores and chromosome arms are distinct. Our results suggest that multiple kinases (either soluble or kinetochore-bound), including a homolog of mammalian NIMA, can create the MPM-2 phosphoepitope. The kinetochore-bound kinase that catalyzes the formation of the MPM-2 phosphoepitope may play an important role in key events such as mitotic kinetochore assembly and sister chromatid separation at anaphase.


Sign in / Sign up

Export Citation Format

Share Document