scholarly journals Pluripotency-Independent Induction of Human Trophoblast Stem Cells from Fibroblasts

2021 ◽  
Author(s):  
Yosef Buganim ◽  
Moriyah Naama ◽  
Ahmed Radwan ◽  
Valery Zayat ◽  
Shulamit Sebban ◽  
...  

Recent studies demonstrated that human trophoblast stem-like cells (hTS-like cells) can be derived from naive embryonic stem cells or be induced from somatic cells by the pluripotency factors, OSKM. This raises two main questions; (i) whether human induced TSCs (hiTSCs) can be generated independently to pluripotent state or factors and (ii) what are the mechanisms by which hTSC state is established during reprogramming. Here, we identify GATA3, OCT4, KLF4 and MYC (GOKM) as a pluripotency-independent combination of factors that can generate stable and functional hiTSCs, from both male and female fibroblasts. By using single and double knockout (KO) fibroblasts for major pluripotency genes (i.e. SOX2 or NANOG/PRDM14) we show that GOKM not only is capable of generating hiTSCs from the KO cells, but rather that the efficiency of the process is increased. Through H3K4me2 and chromatin accessibility profiling we demonstrate that GOKM target different loci and genes than OSKM, and that a significant fraction of them is related to placenta and trophoblast function. Moreover, we show that GOKM exert a greater pioneer activity compared to OSKM. While GOKM target many specific hTSC loci, OSKM mainly target hTSC loci that are shared with hESCs. Finally, we reveal a gene signature of trophoblast-related genes, consisting of 172 genes which are highly expressed in blastocyst-derived TSCs and GOKM-hiTSCs but absent or mildly expressed in OSKM-hiTSCs. Taken together, these results imply that not only is the pluripotent state, and SOX2 specifically, not required to produce functional hiTSCs, but that pluripotency-specific factors actually interfere with the acquisition of the hTSC state during reprogramming.

2021 ◽  
Vol 12 ◽  
Author(s):  
Rongpu Jia ◽  
Yu Gao ◽  
Song Guo ◽  
Si Li ◽  
Liangji Zhou ◽  
...  

Trophoblast stem cells (TSCs) are derived from blastocysts and the extra-embryonic ectoderm (ExE) of post-implantation embryos and play a significant role in fetal development, but the roles that TSCs play in the earlier status of fetal diseases need further exploration. Super enhancers (SEs) are dense clusters of stitched enhancers that control cell identity determination and disease development and may participate in TSC differentiation. We identified key cell identity genes regulated by TSC-SEs via integrated analysis of H3K27ac and H3K4me1 chromatin immunoprecipitation sequencing (ChIP-seq), RNA-sequencing (RNA-seq) and ATAC-sequencing (ATAC-seq) data. The identified key TSC identity genes regulated by SEs, such as epidermal growth factor receptor (EGFR), integrin β5 (ITGB5) and Paxillin (Pxn), were significantly upregulated during TSC differentiation, and the transcription network mediated by TSC-SEs enriched in terms like focal adhesion and actin cytoskeleton regulation related to differentiation of TSCs. Additionally, the increased chromatin accessibility of the key cell identity genes verified by ATAC-seq further demonstrated the regulatory effect of TSC-SEs on TSC lineage commitment. Our results illustrated the significant roles of the TSC-SE-regulated network in TSC differentiation, and identified key TSC identity genes EGFR, ITGB5 and Pxn, providing novel insight into TSC differentiation and lays the foundation for future studies on embryo implantation and related diseases.


2021 ◽  
Vol 7 (33) ◽  
pp. eabf4416
Author(s):  
Yanxing Wei ◽  
Tianyu Wang ◽  
Lishi Ma ◽  
Yanqi Zhang ◽  
Yuan Zhao ◽  
...  

Human trophoblast stem cells (hTSCs) provide a valuable model to study placental development and function. While primary hTSCs have been derived from embryos/early placenta, and transdifferentiated hTSCs from naïve human pluripotent stem cells (hPSCs), the generation of hTSCs from primed PSCs is problematic. We report the successful generation of TSCs from primed hPSCs and show that BMP4 substantially enhances this process. TSCs derived from primed hPSCs are similar to blastocyst-derived hTSCs in terms of morphology, proliferation, differentiation potential, and gene expression. We define the chromatin accessibility dynamics and histone modifications (H3K4me3/H3K27me3) that specify hPSC-derived TSCs. Consistent with low density of H3K27me3 in primed hPSC-derived hTSCs, we show that knockout of H3K27 methyltransferases (EZH1/2) increases the efficiency of hTSC derivation from primed hPSCs. Efficient derivation of hTSCs from primed hPSCs provides a simple and powerful model to understand human trophoblast development, including the pathogenesis of trophoblast-related disorders, by generating disease-specific hTSCs.


2018 ◽  
Vol 27 (19) ◽  
pp. 1350-1359
Author(s):  
Yean Ju Hong ◽  
Kwonho Hong ◽  
Seki Byun ◽  
Hyun Woo Choi ◽  
Jeong Tae Do

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Chen Dong ◽  
Mariana Beltcheva ◽  
Paul Gontarz ◽  
Bo Zhang ◽  
Pooja Popli ◽  
...  

Naïve human pluripotent stem cells (hPSCs) provide a unique experimental platform of cell fate decisions during pre-implantation development, but their lineage potential remains incompletely characterized. As naïve hPSCs share transcriptional and epigenomic signatures with trophoblast cells, it has been proposed that the naïve state may have enhanced predisposition for differentiation along this extraembryonic lineage. Here we examined the trophoblast potential of isogenic naïve and primed hPSCs. We found that naïve hPSCs can directly give rise to human trophoblast stem cells (hTSCs) and undergo further differentiation into both extravillous and syncytiotrophoblast. In contrast, primed hPSCs do not support hTSC derivation, but give rise to non-self-renewing cytotrophoblasts in response to BMP4. Global transcriptome and chromatin accessibility analyses indicate that hTSCs derived from naïve hPSCs are similar to blastocyst-derived hTSCs and acquire features of post-implantation trophectoderm. The derivation of hTSCs from naïve hPSCs will enable elucidation of early mechanisms that govern normal human trophoblast development and associated pathologies.


Placenta ◽  
2017 ◽  
Vol 60 ◽  
pp. S57-S60 ◽  
Author(s):  
Ching-Wen Chang ◽  
Mana M. Parast

2007 ◽  
Vol 12 (3) ◽  
pp. 387-396 ◽  
Author(s):  
Naoko Hattori ◽  
Yuko Imao ◽  
Koichiro Nishino ◽  
Naka Hattori ◽  
Jun Ohgane ◽  
...  

PLoS ONE ◽  
2010 ◽  
Vol 5 (7) ◽  
pp. e11595 ◽  
Author(s):  
Jennifer M. Frost ◽  
Ramya Udayashankar ◽  
Harry D. Moore ◽  
Gudrun E. Moore

2020 ◽  
Vol 117 (13) ◽  
pp. 7236-7244 ◽  
Author(s):  
Sergi Junyent ◽  
Clare L. Garcin ◽  
James L. A. Szczerkowski ◽  
Tung-Jui Trieu ◽  
Joshua Reeves ◽  
...  

Spatial cellular organization is fundamental for embryogenesis. Remarkably, coculturing embryonic stem cells (ESCs) and trophoblast stem cells (TSCs) recapitulates this process, forming embryo-like structures. However, mechanisms driving ESC–TSC interaction remain elusive. We describe specialized ESC-generated cytonemes that react to TSC-secreted Wnts. Cytoneme formation and length are controlled by actin, intracellular calcium stores, and components of the Wnt pathway. ESC cytonemes select self-renewal–promoting Wnts via crosstalk between Wnt receptors, activation of ionotropic glutamate receptors (iGluRs), and localized calcium transients. This crosstalk orchestrates Wnt signaling, ESC polarization, ESC–TSC pairing, and consequently synthetic embryogenesis. Our results uncover ESC–TSC contact–mediated signaling, reminiscent of the glutamatergic neuronal synapse, inducing spatial self-organization and embryonic cell specification.


Sign in / Sign up

Export Citation Format

Share Document