scholarly journals Evaluating the role of coevolution in a horizontally transmitted mutualism

2021 ◽  
Author(s):  
Kayla Stoy ◽  
Joselyne Chavez ◽  
Valeria De Las Casas ◽  
Venkat Talla ◽  
Aileen Berasategui ◽  
...  

AbstractMutualism depends on the alignment of host and symbiont fitness. Horizontal transmission can readily decouple fitness interests, yet horizontally transmitted mutualisms are common in nature. We hypothesized that pairwise coevolution and specialization in host-symbiont interactions underlies the maintenance of cooperation in a horizontally transmitted mutualism. Alternatively, we predicted selection by multiple host species may select for cooperative traits in a generalist symbiont through diffuse coevolution. We tested for signatures of pairwise coevolutionary change between the squash bug Anasa tristis and its horizontally acquired bacterial symbiont Caballeronia spp. by measuring local adaptation. We found no evidence for local adaptation between sympatric combinations of A. tristis squash bugs and Caballeronia spp. across their native geographic range. To test for diffuse coevolution, we performed reciprocal inoculations to test for specialization between three Anasa host species and Caballeronia spp. symbionts isolated from conspecific hosts. We observed no evidence of specialization across host species. Our results demonstrate generalist dynamics underlie the interaction between Anasa insect hosts and their Caballeronia spp. symbionts. Specifically, diffuse coevolution between multiple host species with a shared generalist symbiont may maintain cooperative traits despite horizontal transmission.

2021 ◽  
Author(s):  
Tarik S. Acevedo ◽  
Gregory P. Fricker ◽  
Justine R Garcia ◽  
Tiffany Alcaide ◽  
Aileen Berasategui ◽  
...  

Most insects maintain associations with microbes that shape their ecology and evolution. Such symbioses have important applied implications when the associated insects are pests or vectors of disease. The squash bug, Anasa tristis (Coreoidea: Coreidae), is a significant pest of human agriculture in its own right and also causes damage to crops due to its capacity to transmit a bacterial plant pathogen. Here, we demonstrate that complete understanding of these insects requires consideration of their association with bacterial symbionts in the family Burkholderiaceae. Isolation and sequencing of bacteria housed in midgut crypts in these insects indicates that these bacteria are consistent and dominant members of the crypt-associated bacterial communities. These symbionts are closely related to Caballeronia spp. associated other true bugs in the superfamiles Lygaeoidea and Coreoidea. Fitness assays with representative Burkholderiaceae strains indicate that the association can significantly increase survival and decrease development time, though strains do vary in the benefits that they confer to their hosts, with Caballeronia spp. providing the greatest benefit. Experiments designed to assess transmission mode indicate that unlike many other beneficial insect symbionts, the bacteria are not acquired from parents before or after hatching but are instead acquired from the environment after molting to a later development stage. The bacteria do, however, have the capacity to escape adults to be transmitted to later generations, leaving the possibility for a combination of indirect vertical and horizontal transmission.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tarik S. Acevedo ◽  
Gregory P. Fricker ◽  
Justine R. Garcia ◽  
Tiffanie Alcaide ◽  
Aileen Berasategui ◽  
...  

Most insects maintain associations with microbes that shape their ecology and evolution. Such symbioses have important applied implications when the associated insects are pests or vectors of disease. The squash bug, Anasa tristis (Coreoidea: Coreidae), is a significant pest of human agriculture in its own right and also causes damage to crops due to its capacity to transmit a bacterial plant pathogen. Here, we demonstrate that complete understanding of these insects requires consideration of their association with bacterial symbionts in the family Burkholderiaceae. Isolation and sequencing of bacteria housed in the insects’ midgut crypts indicates that these bacteria are consistent and dominant members of the crypt-associated bacterial communities. These symbionts are closely related to Caballeronia spp. associated with other true bugs in the superfamilies Lygaeoidea and Coreoidea. Fitness assays with representative Burkholderiaceae strains indicate that the association can significantly increase survival and decrease development time, though strains do vary in the benefits that they confer to their hosts, with Caballeronia spp. providing the greatest benefit. Experiments designed to assess transmission mode indicate that, unlike many other beneficial insect symbionts, the bacteria are not acquired from parents before or after hatching but are instead acquired from the environment after molting to a later developmental stage. The bacteria do, however, have the capacity to escape adults to be transmitted to later generations, leaving the possibility for a combination of indirect vertical and horizontal transmission.


2008 ◽  
Vol 4 (5) ◽  
pp. 508-511 ◽  
Author(s):  
Lee M Henry

Local adaptation is promoted when habitat or mating preferences reduce gene flow between populations. However, gene flow is not only a function of dispersal but also of the success of migrants in their new habitat. In this study I investigated mating preference in conjunction with phenotypic plasticity using Aphidius parasitoids adapted to different host species. Males actively attempted to assortatively mate, but actual mating outcomes were strongly influenced by the relative size of the adult males. Results are discussed in the context of assortative mating in combination with the success of migrant males in mitigating gene flow between host-associated parasitoid populations.


2020 ◽  
Vol 8 (6) ◽  
pp. 805 ◽  
Author(s):  
Shu-Ping Tseng ◽  
Po-Wei Hsu ◽  
Chih-Chi Lee ◽  
James K. Wetterer ◽  
Sylvain Hugel ◽  
...  

While Wolbachia, an intracellular bacterial symbiont, is primarily transmitted maternally in arthropods, horizontal transmission between species has been commonly documented. We examined kleptoparasitism as a potential mechanism for Wolbachia horizontal transmission, using ant crickets and their host ants as the model system. We compared prevalence and diversity of Wolbachia across multiple ant cricket species with different degrees of host specificity/integration level. Our analyses revealed at least three cases of inter-ordinal Wolbachia transfer among ant and ant crickets, and also showed that ant cricket species with high host-integration and host-specificity tend to harbor a higher Wolbachia prevalence and diversity than other types of ant crickets. This study provides empirical evidence that distribution of Wolbachia across ant crickets is largely attributable to horizontal transmission, but also elucidates the role of intimate ecological association in successful Wolbachia horizontal transmission.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Laspiur ◽  
J. C. Santos ◽  
S. M. Medina ◽  
J. E. Pizarro ◽  
E. A. Sanabria ◽  
...  

AbstractGiven the rapid loss of biodiversity as consequence of climate change, greater knowledge of ecophysiological and natural history traits are crucial to determine which environmental factors induce stress and drive the decline of threatened species. Liolaemus montanezi (Liolaemidae), a xeric-adapted lizard occurring only in a small geographic range in west-central Argentina, constitutes an excellent model for studies on the threats of climate change on such microendemic species. We describe field data on activity patterns, use of microhabitat, behavioral thermoregulation, and physiology to produce species distribution models (SDMs) based on climate and ecophysiological data. Liolaemus montanezi inhabits a thermally harsh environment which remarkably impacts their activity and thermoregulation. The species shows a daily bimodal pattern of activity and mostly occupies shaded microenvironments. Although the individuals thermoregulate at body temperatures below their thermal preference they avoid high-temperature microenvironments probably to avoid overheating. The population currently persists because of the important role of the habitat physiognomy and not because of niche tracking, seemingly prevented by major rivers that form boundaries of their geographic range. We found evidence of habitat opportunities in the current range and adjacent areas that will likely remain suitable to the year 2070, reinforcing the relevance of the river floodplain for the species’ avoidance of extinction.


2003 ◽  
Vol 6 (3) ◽  
pp. 255-264 ◽  
Author(s):  
Alexandre Robert ◽  
Denis Couvet ◽  
François Sarrazin
Keyword(s):  

2018 ◽  
Vol 1 (10) ◽  
pp. 574-582 ◽  
Author(s):  
Judy M. Bettridge ◽  
Androniki Psifidi ◽  
Zelalem G. Terfa ◽  
Takele T. Desta ◽  
Maria Lozano-Jaramillo ◽  
...  

Microbiology ◽  
2021 ◽  
Vol 167 (9) ◽  
Author(s):  
Anastasia Kottara ◽  
Laura Carrilero ◽  
Ellie Harrison ◽  
James P. J. Hall ◽  
Michael A. Brockhurst

By transferring ecologically important traits between species, plasmids drive genomic divergence and evolutionary innovation in their bacterial hosts. Bacterial communities are often diverse and contain multiple coexisting plasmids, but the dynamics of plasmids in multi-species communities are poorly understood. Here, we show, using experimental multi-species communities containing two plasmids, that bacterial diversity limits the horizontal transmission of plasmids due to the ‘dilution effect’; this is an epidemiological phenomenon whereby living alongside less proficient host species reduces the expected infection risk for a focal host species. In addition, plasmid horizontal transmission was also affected by plasmid diversity, such that the rate of plasmid conjugation was reduced from co-infected host cells carrying both plasmids. In diverse microbial communities, plasmid spread may be limited by the dilution effect and plasmid–plasmid interactions, reducing the rate of horizontal transmission.


Sign in / Sign up

Export Citation Format

Share Document