scholarly journals Vulnerability to climate change of a microendemic lizard species from the central Andes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Laspiur ◽  
J. C. Santos ◽  
S. M. Medina ◽  
J. E. Pizarro ◽  
E. A. Sanabria ◽  
...  

AbstractGiven the rapid loss of biodiversity as consequence of climate change, greater knowledge of ecophysiological and natural history traits are crucial to determine which environmental factors induce stress and drive the decline of threatened species. Liolaemus montanezi (Liolaemidae), a xeric-adapted lizard occurring only in a small geographic range in west-central Argentina, constitutes an excellent model for studies on the threats of climate change on such microendemic species. We describe field data on activity patterns, use of microhabitat, behavioral thermoregulation, and physiology to produce species distribution models (SDMs) based on climate and ecophysiological data. Liolaemus montanezi inhabits a thermally harsh environment which remarkably impacts their activity and thermoregulation. The species shows a daily bimodal pattern of activity and mostly occupies shaded microenvironments. Although the individuals thermoregulate at body temperatures below their thermal preference they avoid high-temperature microenvironments probably to avoid overheating. The population currently persists because of the important role of the habitat physiognomy and not because of niche tracking, seemingly prevented by major rivers that form boundaries of their geographic range. We found evidence of habitat opportunities in the current range and adjacent areas that will likely remain suitable to the year 2070, reinforcing the relevance of the river floodplain for the species’ avoidance of extinction.

Ecography ◽  
2014 ◽  
Vol 38 (3) ◽  
pp. 221-230 ◽  
Author(s):  
Rebecca M. Swab ◽  
Helen M. Regan ◽  
Diethart Matthies ◽  
Ute Becker ◽  
Hans Henrik Bruun

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
James S. Clark ◽  
Robert Andrus ◽  
Melaine Aubry-Kientz ◽  
Yves Bergeron ◽  
Michal Bogdziewicz ◽  
...  

AbstractIndirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.


2021 ◽  
Author(s):  
Gabriele Casazza ◽  
Thomas Abeli ◽  
Gianluigi Bacchetta ◽  
Davide Dagnino ◽  
Giuseppe Fenu ◽  
...  

2014 ◽  
Vol 281 (1779) ◽  
pp. 20133017 ◽  
Author(s):  
Tatsuya Amano ◽  
Robert P. Freckleton ◽  
Simon A. Queenborough ◽  
Simon W. Doxford ◽  
Richard J. Smithers ◽  
...  

To generate realistic projections of species’ responses to climate change, we need to understand the factors that limit their ability to respond. Although climatic niche conservatism, the maintenance of a species’s climatic niche over time, is a critical assumption in niche-based species distribution models, little is known about how universal it is and how it operates. In particular, few studies have tested the role of climatic niche conservatism via phenological changes in explaining the reported wide variance in the extent of range shifts among species. Using historical records of the phenology and spatial distribution of British plants under a warming climate, we revealed that: (i) perennial species, as well as those with weaker or lagged phenological responses to temperature, experienced a greater increase in temperature during flowering (i.e. failed to maintain climatic niche via phenological changes); (ii) species that failed to maintain climatic niche via phenological changes showed greater northward range shifts; and (iii) there was a complementary relationship between the levels of climatic niche conservatism via phenological changes and range shifts. These results indicate that even species with high climatic niche conservatism might not show range shifts as instead they track warming temperatures during flowering by advancing their phenology.


Author(s):  
Maria Helena Hällfors ◽  
Jishan Liao ◽  
Jason D. K. Dzurisin ◽  
Ralph Grundel ◽  
Marko Hyvärinen ◽  
...  

Climate ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 146
Author(s):  
Lindsay P. Galway ◽  
Thomas Beery ◽  
Chris Buse ◽  
Maya K. Gislason

Despite widespread calls to action from the scientific community and beyond, a concerning climate action gap exists. This paper aims to enhance our understanding of the role of connectedness to nature in promoting individual-level climate action in a unique setting where climate research and action are lacking: Canada’s Provincial North. To begin to understand possible pathways, we also examined whether climate worry and talking about climate change with family and friends mediate the relationship between connectedness to nature and climate action. We used data collected via postal surveys in two Provincial North communities, Thunder Bay (Ontario), and Prince George (British Columbia) (n = 628). Results show that connectedness to nature has a direct positive association with individual-level climate action, controlling for gender and education. Results of parallel mediation analyses further show that connectedness to nature is indirectly associated with individual-level climate action, mediated by both climate worry and talking about climate change with family and friends. Finally, results suggest that climate worry and talking about climate change with family and friends serially mediate the relationship between connectedness to nature and with individual-level climate action. These findings are relevant for climate change engagement and action, especially across Canada’s Provincial North, but also in similar settings characterized by marginalization, heightened vulnerability to climate change, urban islands within vast rural and remote landscapes, and economies and social identities tied to resource extraction. Drawing on these findings, we argue that cultivating stronger connections with nature in the places where people live, learn, work, and play is an important and currently underutilized leverage point for promoting individual-level climate action. This study therefore adds to the current and increasingly relevant calls for (re-)connecting with nature that have been made by others across a range of disciplinary and sectoral divides.


Sign in / Sign up

Export Citation Format

Share Document