scholarly journals What's past is past, mostly: Brassicaceae host plants mask the feedback from the previous year's soil history on bacterial communities, except when the Brassicaceae hosts experience drought

2021 ◽  
Author(s):  
Andrew Blakney ◽  
Luke Bainard ◽  
Marc St-Arnaud ◽  
Mohamed Hijri

Previous soil history and the current plant hosts are two plant-soil feedbacks that operate at different time-scales to influence the structure soil bacterial communities. In this study, we used a MiSeq metabarcoding strategy to describe the impact of five Brassicaceae host plant species, and three different soil histories, on the structure of their bacterial root and rhizosphere communities at full flower. We found that the Brassicaceae host plants were consistently significant in structuring the bacterial communities. Four host plants (Sinapis alba, Brassica napus, B. juncea, B. carinata) formed nearly the same bacterial communities, regardless of soil history. Camelina sativa host plants structured phylogenetically distinct bacterial communities compared to the other hosts, particularly in their roots. Soil history established the previous year was only a significant factor for bacterial community structure when the feedback of the Brassicaceae host plants was weakened, potentially due to limited soil moisture during a dry year. Understanding how plant-soil feedbacks operate at different time-scales and are involved in how microbial communities are structured is a pre-requisite for employing microbiome technologies in improving agricultural systems.

Author(s):  
Xiaoli Zhou ◽  
Jingang Liang ◽  
Ying Luan ◽  
Xinyuan Song ◽  
Zhengguang Zhang

Returning straw to the soil is an effective way to improve the soil quality. As genetically modified (GM) crops experience expanded growing scales, returning straw to the soil could also be necessary. However, the impact of GM crop straws on soil safety remains unclear. The environment (including soil types, humidity and temperature) can result in a significant difference in the diversity of soil bacterial communities. Here, we compared the impacts of the straw from Bt maize IE09S034 (IE) and near-isogenic non-Bt maize Zong31 (CK) on soil bacterial community and microbial metabolic activity in three different environments. Sampling was carried out following 6–10 months of decomposition (May, June, July, and August) in three localities in Chinese cities (Changchun, Jinan, and Beijing). Our results showed that Bt maize residues posed no direct impact on soil bacterial communities in contrast to the environment and decomposed time. The microbial functional diversity and metabolic activity showed no significant difference between IE and CK. The results could be a reference for further assessing the effect of Bt maize residues on the soil that promotes the commercialisation of Bt maize IE09S034.


2020 ◽  
Vol 96 (7) ◽  
Author(s):  
Ana Novoa ◽  
Jan-Hendrik Keet ◽  
Yaiza Lechuga-Lago ◽  
Petr Pyšek ◽  
Johannes J Le Roux

ABSTRACT Coastal dunes are ecosystems of high conservation value that are strongly impacted by human disturbances and biological invasions in many parts of the world. Here, we assessed how urbanization and Carpobrotus edulis invasion affect soil bacterial communities on the north-western coast of Spain, by comparing the diversity, structure and composition of soil bacterial communities in invaded and uninvaded soils from urban and natural coastal dune areas. Our results suggest that coastal dune bacterial communities contain large numbers of rare taxa, mainly belonging to the phyla Actinobacteria and Proteobacteria. We found that the presence of the invasive C. edulis increased the diversity of soil bacteria and changed community composition, while urbanization only influenced bacterial community composition. Furthermore, the effects of invasion on community composition were conditional on urbanization. These results were contrary to predictions, as both C. edulis invasion and urbanization have been shown to affect soil abiotic conditions of the studied coastal dunes in a similar manner, and therefore were expected to have similar effects on soil bacterial communities. Our results suggest that other factors (e.g. pollution) might be influencing the impact of urbanization on soil bacterial communities, preventing an increase in the diversity of soil bacteria in urban areas.


2016 ◽  
Vol 52 (8) ◽  
pp. 1121-1134 ◽  
Author(s):  
Luigi Chessa ◽  
Sven Jechalke ◽  
Guo-Chun Ding ◽  
Alba Pusino ◽  
Nicoletta Pasqualina Mangia ◽  
...  

2020 ◽  
Author(s):  
Juanjuan Fu ◽  
Yilan Luo ◽  
Pengyue Sun ◽  
Jinzhu Gao ◽  
Donghao Zhao ◽  
...  

Abstract Background: The shade represents one of the major environmental limitations for turfgrass growth. Shade influences plant growth and alters plant metabolism, yet little is known about how shade affects the structure of rhizosphere soil microbial communities and the role of soil microorganisms in plant shade responses. In this study, a glasshouse experiment was conducted to examine the impact of shade on the growth and photosynthetic capacity of two contrasting shade-tolerant turfgrasses, shade-tolerant dwarf lilyturf (Ophiopogon japonicus, OJ) and shade-intolerant perennial turf-type ryegrass (Lolium perenne, LP). We also examined soil-plant feedback effects on shade tolerance in the two turfgrass genotypes. The composition of the soil bacterial community was assayed using high-throughput sequencing. Results: OJ maintained higher photosynthetic capacity and root growth than LP under shade stress, thus OJ was found to be more shade-tolerant than LP. Shade-intolerant LP responded better to both shade and soil microbes than shade-tolerant OJ. The shade and live soil decreased LP growth, but increased biomass allocation to shoots in the live soil. The plant shade response index of LP is higher in live soil than sterile soil, driven by weakened soil-plant feedback under shade stress. In contrast, there was no difference in these values for OJ under similar shade and soil treatments. Shade stress had little impact on the diversity of the OJ and the LP bacterial communities, but instead impacted their composition. The OJ soil bacterial communities were mostly composed of Proteobacteria and Acidobacteria. Further pairwise fitting analysis showed that a positive correlation of shade-tolerance in two turfgrasses and their bacterial community compositions. Several soil properties (NO3--N, NH4+-N, AK) showed a tight coupling with several major bacterial communities under shade stress. Moreover, OJ shared core bacterial taxa known to promote plant growth and confer tolerance to shade stress, which suggests common principles underpinning OJ-microbe interactions. Conclusion: Soil microorganisms mediate plant responses to shade stress via plant-soil feedback and shade-induced change in the rhizosphere soil bacterial community structure for OJ and LP plants. These findings emphasize the importance of understanding plant-soil interactions and their role in the mechanisms underlying shade tolerance in shade-tolerant turfgrasses.


Author(s):  
Qi Chai ◽  
Tiejun Wang ◽  
Chongli Di

Abstract Soil moisture displays complex spatiotemporal patterns across scales, making it important to disentangle the impacts of environmental factors on soil moisture temporal dynamics at different time scales. This study evaluated the factors affecting soil moisture dynamics at different time scales using long-term soil moisture data obtained from Nebraska and Utah. The empirical mode decomposition method was employed to decompose soil moisture time series into different temporal components with several intrinsic mode functions (IMFs) and one residual component. Results showed that the percent variance contribution (PVC) of IMFs to the total soil moisture temporal variance tended to increase for the IMFs with longer time periods. It indicated that the long-term soil moisture variations in study regions were mainly determined by low-temporal frequency signals related to seasonal climate and vegetation variations. Besides, the PVCs at short- and medium-temporal ranges were positively correlated with climate dryness, while negatively at longer temporal ranges. Moreover, the results suggested that the impact of climate on soil moisture dynamics at different time scales might vary across different climate zones, while soil effect was comparatively less in both regions. It provides additional insights into understanding soil moisture temporal dynamics in regions with contrasting climatic conditions.


2021 ◽  
Vol 368 (3) ◽  
Author(s):  
Álvaro del Moral ◽  
Isaac Garrido-Benavent ◽  
Jorge Durán ◽  
Jan R Lehmann ◽  
Alexandra Rodríguez ◽  
...  

ABSTRACT Polar glacier forefields offer an unprecedented framework for studying community assembly processes in regions that are geographically and climatically isolated. Through amplicon sequence variant (ASV) inference, we compared the composition and structure of soil bacterial communities from glacier forefields in Iceland and Antarctica to assess overlap between communities and the impact of established cryptogamic covers on the uniqueness of their taxa. These pioneer microbial communities were found to share only 8% of ASVs and each taxonomic group's contribution to the shared ASV data subset was heterogeneous and independent of their relative abundance. Although the presence of ASVs specific to one glacier forefield and/or different cryptogam cover values confirms the existence of habitat specialist bacteria, our data show that the influence of cryptogams on the edaphic bacterial community structure also varied also depending on the taxonomic group. Hence, the establishment of distinct cryptogamic covers is probably not the only factor driving the uniqueness of bacterial communities at both poles. The structure of bacterial communities colonising deglaciated areas seems also conditioned by lineage-specific limitations in their dispersal capacity and/or their establishment and persistence in these isolated and hostile regions.


2019 ◽  
Author(s):  
Lucie A Malard ◽  
Muhammad Zohaib Anwar ◽  
Carsten S Jacobsen ◽  
David A Pearce

AbstractThe considerable microbial diversity of soils, their variety and key role in biogeochemical cycling has led to growing interest in their global distribution and the impact that environmental change might have at the regional level. In the broadest study of Arctic soil bacterial communities to date, we used high-throughput DNA sequencing to investigate the bacterial diversity from 200 independent Arctic soil samples from 43 sites. We quantified the impact of spatial and environmental factors on bacterial community structure using variation partitioning analysis, illustrating a non-random distribution across the region. pH was confirmed as the key environmental driver structuring Arctic soil bacterial communities, while total organic carbon, moisture and conductivity were shown to have little effect. Specialist taxa were more abundant in acidic and alkaline soils while generalist taxa were more abundant in acidoneutral soils. Of 48,147 bacterial taxa, a core microbiome composed of only 13 taxa that were ubiquitously distributed and present within 95% of samples was identified, illustrating the high potential for endemism in the region. Overall, our results demonstrate the importance of spatial and edaphic factors on the structure of Arctic soil bacterial communities.


2019 ◽  
Author(s):  
Juanjuan Fu ◽  
Yilan Luo ◽  
Pengyue Sun ◽  
Jinzhu Gao ◽  
Donghao Zhao ◽  
...  

Abstract Background: Perturbations in the abiotic stress directly or indirectly affect plants and root-associated microbial communities. Shade stress presents one of the major abiotic limitations for turfgrass growth, as light availability is severely reduced under a leaf canopy. Studies have shown that shade stress influences plant growth and alters plant metabolism, yet little is known about how it affects the structure of rhizosphere soil bacterial communities. In this study, a glasshouse experiment was conducted to examine the impact of shade stress on the physiology of two contrasting shade-tolerant turfgrasses and their rhizosphere soil microbes. Shade-tolerant dwarf lilyturf (Ophiopogon japonicus, OJ) and shade-intolerant perennial turf-type ryegrasss (Lolium perenne, LP) were used. Bacterial community composition was assayed using high-throughput sequencing. Results: Our physiochemical data showed that under shade stress, OJ maintained higher photosynthetic capacity and root growth, thus OJ was found to be more shade-tolerant than LP. Illumina sequencing data revealed that shade stress had little impact on the diversity of the OJ and LP’s bacterial communities, but instead impacted the composition of bacterial communities. The bacterial communities were mostly composed of Proteobacteria and Acidobacteria in OJ soil. Further pairwise fitting analysis showed that a positive correlation of shade-tolerance in two turfgrasses and their bacterial community compositions. Several soil properties (NO3--N, NH4+-N, AK) showed a tight coupling with several major bacterial communities under shade stress, indicating that they are important drivers determining bacterial community structures. Moreover, OJ shared core bacterial taxa known to promote plant growth and confer tolerance to shade stress, which suggests common principles underpinning OJ-microbe interactions. Conclusion: OJ was more shade-tolerant than LP. Shifts in rhizosphere soil bacterial community structure play a vital role in shade-tolerance of OJ plants.


Sign in / Sign up

Export Citation Format

Share Document