scholarly journals Flv3A facilitates O2 photoreduction and affects H2 photoproduction independently of Flv1A in diazotrophic Anabaena filaments

2021 ◽  
Author(s):  
Anita Santana Sanchez ◽  
Lauri Nikkanen ◽  
Gabor Toth ◽  
Maria Ermakova ◽  
Sergey Kosourov ◽  
...  

The model heterocyst-forming filamentous cyanobacterium, Anabaena sp. PCC 7120 (Anabaena) represents multicellular organisms capable of simultaneously performing oxygenic photosynthesis in vegetative cells and the O2-sensitive N2-fixation inside the heterocysts. The flavodiiron proteins (FDPs) have been shown to participate in photoprotection of photosynthesis by driving excess electrons to O2 (Mehler-like reaction). Here, we addressed the physiological relevance of the vegetative cell-specific Flv1A and Flv3A on the bioenergetic processes occurring in the diazotrophic Anabaena under variable CO2. We demonstrate that both Flv1A and Flv3A are required for proper induction of the Mehler-like reaction upon a sudden change in light intensity, which is likely important for the activation of carbon-concentrating mechanisms (CCM) and CO2 fixation. Nevertheless, Flv3A showed a more important role in photoprotection than Flv1A. Under low CO2 diazotrophic conditions, Flv3A is capable of mediating moderate O2 photoreduction, independently of Flv1A, but in coordination with Flv2 and Flv4. Strikingly, the lack of Flv3A resulted in strong downregulation of the heterocyst-specific uptake hydrogenase, which led to enhanced H2 photoproduction under both oxic and micro-oxic conditions. These results reveal a novel regulatory network between the Mehler-like reaction and the H2 metabolism, which is of great interest for future photobiological production of H2 in Anabaena.

Life ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 60 ◽  
Author(s):  
He Zhang ◽  
Xudong Xu

In the filamentous cyanobacterium, Anabaena sp. PCC 7120, single heterocysts differentiate at semi-regular intervals in response to nitrogen stepdown. HetR is a principal regulator of heterocyst differentiation, and hetP and hetZ are two genes that are regulated directly by HetR. In a hetR mutant generated from the IHB (Institute of Hydrobiology) substrain of PCC 7120, heterocyst formation can be restored by moderate expression of hetZ and hetP. The resulting heterocysts are located at terminal positions. We used a tandem promoter, PrbcLPpetE, to express hetZ and hetP strongly in the hetR mutant. Co-expression of hetZ and hetP enabled the hetR mutant to form multiple contiguous heterocysts at both terminal and intercalary positions. Expression of hetZ, alone resulted in terminally located heterocysts, whereas expression of hetP, alone produced enlarged cells in strings. In the absence of HetR, formation of heterocysts was insensitive to the peptide inhibitor, RGSGR.


2009 ◽  
Vol 192 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Masakazu Toyoshima ◽  
Naobumi V. Sasaki ◽  
Makoto Fujiwara ◽  
Shigeki Ehira ◽  
Masayuki Ohmori ◽  
...  

Microbiology ◽  
2003 ◽  
Vol 149 (11) ◽  
pp. 3257-3263 ◽  
Author(s):  
Jian-Hong Li ◽  
Sophie Laurent ◽  
Viren Konde ◽  
Sylvie Bédu ◽  
Cheng-Cai Zhang

In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, a starvation of combined nitrogen induces differentiation of heterocysts, cells specialized in nitrogen fixation. How do filaments perceive the limitation of the source of combined nitrogen, and what determines the proportion of heterocysts? In cyanobacteria, 2-oxoglutarate provides a carbon skeleton for the incorporation of inorganic nitrogen. Recently, it has been proposed that the concentration of 2-oxoglutarate reflects the nitrogen status in cyanobacteria. To investigate the effect of 2-oxoglutarate on heterocyst development, a heterologous gene encoding a 2-oxoglutarate permease under the control of a regulated promoter was expressed in Anabaena sp. PCC 7120. The increase of 2-oxoglutarate within cells can trigger heterocyst differentiation in a subpopulation of filaments even in the presence of nitrate. In the absence of a source of combined nitrogen, it can increase heterocyst frequency, advance the timing of commitment to heterocyst development and further increase the proportion of heterocysts in a patS mutant. Here, it is proposed that the intracellular concentration of 2-oxoglutarate is involved in the determination of the proportion of the two cell types according to the carbon/nitrogen status of the filament.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Liu ◽  
Wei-Yue Xing ◽  
Ju-Yuan Zhang ◽  
Xiaoli Zeng ◽  
Yiling Yang ◽  
...  

Bacterial cell shape is determined by the peptidoglycan (PG) layer. The cyanobacterium Anabaena sp. PCC 7120 (Anabaena) is a filamentous strain with ovoid-shaped cells connected together with incomplete cell constriction. When deprived of combined nitrogen in the growth medium, about 5–10% of the cells differentiate into heterocysts, cells devoted to nitrogen fixation. It has been shown that PG synthesis is modulated during heterocyst development and some penicillin-binding proteins (PBPs) participating in PG synthesis are required for heterocyst morphogenesis or functioning. Anabaena has multiple PBPs with functional redundancy. In this study, in order to examine the function of PG synthesis and its relationship with heterocyst development, we created a conditional mutant of mraY, a gene necessary for the synthesis of the PG precursor, lipid I. We show that mraY is required for cell and filament integrity. Furthermore, when mraY expression was being limited, persistent septal PG synthetic activity was observed, resulting in increase in cell width. Under non-permissive conditions, filaments and cells were rapidly lysed, and no sign of heterocyst development within the time window allowed was detected after nitrogen starvation. When mraY expression was being limited, a high percentage of heterocyst doublets were found. These doublets are formed likely as a consequence of delayed cell division and persistent septal PG synthesis. MraY interacts with components of both the elongasome and the divisome, in particular those directly involved in PG synthesis, including HetF, which is required for both cell division and heterocyst formation.


2020 ◽  
Vol 171 (5-6) ◽  
pp. 194-202
Author(s):  
Huaduo Yan ◽  
Yarui Cheng ◽  
Li Wang ◽  
Wenli Chen

2014 ◽  
Vol 171 (11) ◽  
pp. 915-926 ◽  
Author(s):  
Francisco Leganés ◽  
Francisco Martínez-Granero ◽  
M. Ángeles Muñoz-Martín ◽  
Eduardo Marco ◽  
Alberto Jorge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document