cell width
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 45)

H-INDEX

24
(FIVE YEARS 3)

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1699
Author(s):  
Tao Xian ◽  
Jingwen Xia ◽  
Wei Wei ◽  
Zehua Zhang ◽  
Rui Wang ◽  
...  

This review provides a comprehensive coverage of changes of the Hadley Cell extent and their impacts on the weather, climate, and society. The theories predicting the Hadley Cell width are introduced as a background for the understanding of the circulation changes and the metrics used for detection. A variety of metrics derived from various data sources have been used to quantify the Hadley Cell width. These metrics can be classified as dynamical, hydrological, thermal, and chemical metrics, based on the properties of the variables used. The dynamical metrics have faster trends than those based on thermal or hydrological metrics, with the values exceeding 1 degree per decade. The hydrological metric edge poleward trends were found a slightly faster expansion in the Northern Hemisphere than its southern counterpart. The chemical metrics show a poleward trend of more than 1 degree per decade in both hemispheres. We also suggest a few reasons for the discrepancy among trends in Hadley Cell expansion found in previous studies. Multiple forcings have been found responsible for the expansion, which seems to be more attributed to the natural variability than anthropogenic forcing. Validation of the scaling theories by the trends in Hadley Cell width suggests that theories considering the extratropical factor would be better models for predicting the Hadley Cell width changes. The Hadley Cell has an impact on different atmospheric processes on varying spatio-temporal scales, ranging from weather to climate, and finally on society. The remaining questions regarding Hadley Cell climate are briefly summarized at the end.


mSystems ◽  
2021 ◽  
Author(s):  
Dimitri Juillot ◽  
Charlène Cornilleau ◽  
Nathalie Deboosere ◽  
Cyrille Billaudeau ◽  
Parfait Evouna-Mengue ◽  
...  

Bacterial shape is primarily dictated by the external cell wall, a vital structure that, as such, is the target of countless antibiotics. Our understanding of how bacteria synthesize and maintain this structure is therefore a cardinal question for both basic and applied research.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Liu ◽  
Wei-Yue Xing ◽  
Ju-Yuan Zhang ◽  
Xiaoli Zeng ◽  
Yiling Yang ◽  
...  

Bacterial cell shape is determined by the peptidoglycan (PG) layer. The cyanobacterium Anabaena sp. PCC 7120 (Anabaena) is a filamentous strain with ovoid-shaped cells connected together with incomplete cell constriction. When deprived of combined nitrogen in the growth medium, about 5–10% of the cells differentiate into heterocysts, cells devoted to nitrogen fixation. It has been shown that PG synthesis is modulated during heterocyst development and some penicillin-binding proteins (PBPs) participating in PG synthesis are required for heterocyst morphogenesis or functioning. Anabaena has multiple PBPs with functional redundancy. In this study, in order to examine the function of PG synthesis and its relationship with heterocyst development, we created a conditional mutant of mraY, a gene necessary for the synthesis of the PG precursor, lipid I. We show that mraY is required for cell and filament integrity. Furthermore, when mraY expression was being limited, persistent septal PG synthetic activity was observed, resulting in increase in cell width. Under non-permissive conditions, filaments and cells were rapidly lysed, and no sign of heterocyst development within the time window allowed was detected after nitrogen starvation. When mraY expression was being limited, a high percentage of heterocyst doublets were found. These doublets are formed likely as a consequence of delayed cell division and persistent septal PG synthesis. MraY interacts with components of both the elongasome and the divisome, in particular those directly involved in PG synthesis, including HetF, which is required for both cell division and heterocyst formation.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Alexandra Colin ◽  
Gabriele Micali ◽  
Louis Faure ◽  
Marco Cosentino Lagomarsino ◽  
Sven van Teeffelen

Cells must control the cell cycle to ensure that key processes are brought to completion. In Escherichia coli, it is controversial whether cell division is tied to chromosome replication or to a replication-independent inter-division process. A recent model suggests instead that both processes may limit cell division with comparable odds in single cells. Here, we tested this possibility experimentally by monitoring single-cell division and replication over multiple generations at slow growth. We then perturbed cell width, causing an increase of the time between replication termination and division. As a consequence, replication became decreasingly limiting for cell division, while correlations between birth and division and between subsequent replication-initiation events were maintained. Our experiments support the hypothesis that both chromosome replication and a replication-independent inter-division process can limit cell division: the two processes have balanced contributions in non-perturbed cells, while our width perturbations increase the odds of the replication-independent process being limiting.


Apidologie ◽  
2021 ◽  
Author(s):  
Piotr Dziechciarz ◽  
Grzegorz Borsuk ◽  
Krzysztof Olszewski

AbstractThe aim of the study was to investigate the impact of the combination of the colony type (kept on small-cell or standard-cell combs) and the width of worker comb cells (small-cell or standard-cell combs) on the body weight and morphometric traits of worker bees. The values of morphometric parameters of worker bees changed within a substantially lower range than the width of their rearing cells. This indicates that the worker body size is relatively constant, and manipulation with the cell width is not a good method for modeling the body size of workers. The reduction in the thorax weight was proportional to the decrease in the comb cell width, and this part of the body proved to be most susceptible to weight reduction caused by the use of small-cell combs. The rearing of workers in small-cell combs in the colony kept on standard-cell combs resulted in an increase in the value of the fill factor (thorax width to cell width ratio). The relatively constant body size of workers in combination with the use of small-cell combs resulting in an increase in the fill factor may be one of the determinants of increased resistance of the insects to Varroa destructor. The values of the morphometric traits commonly used for identification of honeybee subspecies, i.e., the length of the fore wing, the sum of the widths of 3rd and 4thth tergites, and the proboscis length, were inconsiderably altered vs. the changes in the comb cell width, which confirms their high suitability for identification of honeybee subspecies.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Roman Y Medvedev ◽  
Frank C DeGuire ◽  
Alexey Glukhov

Background: Atrial fibrillation (AF) often occurs during hypertension and is associated with an increase in cardiomyocyte stretch. Mechanism of ectopic beats, that trigger AF, has been linked to Ca 2+ mishandling and leaky hyperphosphorylated ryanodine receptors (RyRs), while the underlying mechanisms remain elusive. Caveolae membrane structures are involved in cell mechanosensing processes and control the cAMP signaling pathway. We hypothesized that mechanical stretch disrupts caveolae, promoting cAMP production and sarcoplasmic reticulum Ca 2+ leak via augmentation of RyRs phosphorylation. Methods and Results: Cell size analysis and Ca 2+ dynamics measurements were performed by confocal imaging of isolated mouse atrial myocytes. Cell stretch was modeled by hypoosmotic swelling (from 310 mOsM to 220 mOsM to flatten caveolae structures) resulting in a ~30% increase in cell width (p<0.05) with no changes in cell length. Swelling resulted in a biphasic effect on Ca 2+ spark activity: a fast (<10 min of exposure) ~50% increase (p<0.001) followed by a slow decrease to the level observed in isotonic conditions (>30 min of exposure). Similarly, caveolae disruption via cholesterol depletion by 10 mM methyl-β-cyclodextrin (MβCD) led to 2-fold increase in Ca 2+ sparks frequency (p<0.001). Swelling- and MβCD-induced increases in atrial Ca 2+ spark activity were prevented via inhibition of cAMP production by adenylyl cyclases by 0.1mM SQ22536 or cAMP-dependent protein kinase A (PKA) by 1μM H-89. Then, we tested if this mechanism is present in atrial myocytes from pressure-overloaded (4-weeks transaortic constriction, TAC) mice. Atrial myocytes from TAC mice showed a 1.6 times higher Ca 2+ sparks frequency than wild-type myocytes (p<0.01), which was significantly reduced (p<0.01) to wild-type level after incubation with SQ22536. Conclusions: Our findings suggest that cell stretch increases spontaneous Ca 2+ spark activity through the disruption of caveolae and cAMP-mediated augmentation of PKA activity. This mechanism could be involved in the Ca 2+ mishandling and AF in pressure overloaded hearts.


2021 ◽  
Vol 2021 (3) ◽  
pp. 17-33
Author(s):  
Ashish Vashishtha ◽  
Dean Callaghan ◽  
Cathal Nolan ◽  
Ralf Deiterding

Abstract Seeking to better understand the physical phenomena underlying detonation wave propagation through small holes (especially the phenomenon of detonation re-initiation or its failure), we investigated the propagation of a detonation wave along a tube filled with a hydrogen-oxygen mixture diluted with argon, in the presence of obstacles with a small orifice hole. Numerical simulations were performed in a two-dimensional domain using adaptive mesh refinement and by solving compressible Euler equations for multiple thermally perfect species with a reactive source term. A premixed mixture of H2:O2:Ar at a ratio 2:1:7 at 10.0 kPa and 298 K was used in a 90 mm diameter tube with a detonation wave travelling from one end. We found that a single orifice placed at 200 mm from one end of the tube, with varying diameters of 6, 10, 14, 16, 18, 30, and 50 mm, showed an initial decoupling of the detonation wave into a shockwave and flame front. The detonation wave fails to propagate along the tube for orifice diameters less than λ, while it propagates by different re-initiation pathways for orifice diameters greater than λ, where λ is the cell-width for regular detonation propagation.


2021 ◽  
pp. mbc.E20-05-0277
Author(s):  
Kristi E. Miller ◽  
Joseph O. Magliozzi ◽  
Noelle A. Picard ◽  
James B. Moseley

Polarized morphogenesis is achieved by targeting or inhibiting growth at distinct regions. Rod-shaped fission yeast cells grow exclusively at their ends by restricting exocytosis and secretion to these sites. This growth pattern implies the existence of mechanisms that prevent exocytosis and growth along non-growing cell sides. We previously identified a set of 50-100 megadalton-sized node structures along the sides of fission yeast cells that contain the interacting proteins Skb1 and Slf1. Here, we show that Skb1-Slf1 nodes contain the syntaxin-like SNARE Psy1, which mediates exocytosis in fission yeast. Psy1 localizes in a diffuse pattern at cell tips where it likely promotes exocytosis and growth, but Psy1 is sequestered in Skb1-Slf1 nodes at cell sides where growth does not occur. Mutations that prevent node assembly or inhibit Psy1 localization to nodes lead to aberrant exocytosis at cell sides and increased cell width. Genetic results indicate that this Psy1 node mechanism acts in parallel to actin cables and Cdc42 regulation. Our work suggests that sequestration of syntaxin-like Psy1 at non-growing regions of the cell cortex reinforces cell morphology by restricting exocytosis to proper sites of polarized growth.


2021 ◽  
Vol 118 (32) ◽  
pp. e2021416118
Author(s):  
Enno R. Oldewurtel ◽  
Yuki Kitahara ◽  
Sven van Teeffelen

During growth, cells must expand their cell volumes in coordination with biomass to control the level of cytoplasmic macromolecular crowding. Dry-mass density, the average ratio of dry mass to volume, is roughly constant between different nutrient conditions in bacteria, but it remains unknown whether cells maintain dry-mass density constant at the single-cell level and during nonsteady conditions. Furthermore, the regulation of dry-mass density is fundamentally not understood in any organism. Using quantitative phase microscopy and an advanced image-analysis pipeline, we measured absolute single-cell mass and shape of the model organisms Escherichia coli and Caulobacter crescentus with improved precision and accuracy. We found that cells control dry-mass density indirectly by expanding their surface, rather than volume, in direct proportion to biomass growth—according to an empirical surface growth law. At the same time, cell width is controlled independently. Therefore, cellular dry-mass density varies systematically with cell shape, both during the cell cycle or after nutrient shifts, while the surface-to-mass ratio remains nearly constant on the generation time scale. Transient deviations from constancy during nutrient shifts can be reconciled with turgor-pressure variations and the resulting elastic changes in surface area. Finally, we find that plastic changes of cell width after nutrient shifts are likely driven by turgor variations, demonstrating an important regulatory role of mechanical forces for width regulation. In conclusion, turgor-dependent cell width and a slowly varying surface-to-mass coupling constant are the independent variables that determine dry-mass density.


2021 ◽  
Vol 23 (06) ◽  
pp. 537-545
Author(s):  
Rakshak Udupa T S ◽  
◽  
Shashank K Holla ◽  
Namita Palecha ◽  
◽  
...  

Mammography, which is also calledMastography, is the process of using low-energy X-rays to inspect the human breast for screening and diagnostics. The purpose of mammography is to detect breast cancer early, usually by looking for specific lumps or microcalcifications. The X-rays used are usually around 30 kVp. Excessive voltage to such a machine would be harmful to the patient. Proper monitoring of temperature and pressure needs to be ensured. To ensure this, a start-up sequence module is developed. The start-up sequence module reads the digitized voltage, pressure, and temperature reading from the sensor and asserts all the outputs to ensure that the machine is ready. The scan chain is formed of 13 scan flip-flops in this configuration. The synthesis mapped the design to 484 instances of cells in the open-source PDK technology. The design had a total area of 594 μm2, with a cell width of 0.297 μm, and a height of 0.99 μm.


Sign in / Sign up

Export Citation Format

Share Document