scholarly journals Development of a clinical model to predict vagus nerve stimulation response in pediatric patients with drug-resistant epilepsy

Author(s):  
Nallammai Muthiah ◽  
Arka Mallela ◽  
Lena Vodovotz ◽  
Nikhil Sharma ◽  
Emefa Akwayena ◽  
...  

Introduction Epilepsy impacts 470,000 children in the United States, and children with epilepsy are estimated to expend 6 times more on healthcare than those without epilepsy. For patients with antiseizure medication (ASM)-resistant epilepsy and unresectable seizure foci, vagus nerve stimulation (VNS) is a treatment option. Predicting response to VNS has been historically challenging. We aimed to create a clinical prediction score which could be utilized in a routine outpatient clinical setting. Methods We performed an 11-year, single-center retrospective analysis of patients <21 years old with ASM-resistant epilepsy who underwent VNS. The primary outcome was >50% seizure frequency reduction after one year. Univariate and multivariate logistic regressions were performed to assess clinical factors associated with VNS response; 70% and 30% of the sample were used to train and validate the multivariate model, respectively. A prediction score was developed based on the multivariate regression. Sensitivity, specificity, and area under the receiver operating curve (AUC) were calculated. Results This analysis included 365 patients. Multivariate logistic regression revealed that variables associated with VNS response were: <4 years of epilepsy duration before VNS (p=0.008) and focal motor seizures (p=0.037). The variables included in the clinical prediction score were: epilepsy duration before VNS, age at seizure onset, number of pre-VNS ASMs, if VNS was the patient's first therapeutic epilepsy surgery, and predominant seizure semiology. The final AUC was 0.7013 for the "fitted" sample and 0.6159 for the "validation" sample. Conclusions We developed a clinical model to predict VNS response in one of the largest samples of pediatric VNS patients to date. While the presented clinical prediction model demonstrated an acceptable AUC in the training cohort, clinical variables alone likely do not accurately predict VNS response. This score may be useful upon further validation, though its predictive ability underscores the need for more robust biomarkers of treatment response.

2019 ◽  
Vol 20 (3) ◽  
pp. 189-198 ◽  
Author(s):  
Laura Pérez-Carbonell ◽  
Howard Faulkner ◽  
Sean Higgins ◽  
Michalis Koutroumanidis ◽  
Guy Leschziner

Vagus nerve stimulation (VNS) is a neuromodulatory therapeutic option for drug-resistant epilepsy. In randomised controlled trials, VNS implantation has resulted in over 50% reduction in seizure frequency in 26%–40% of patients within 1 year. Long-term uncontrolled studies suggest better responses to VNS over time; however, the assessment of other potential predictive factors has led to contradictory results. Although initially designed for managing focal seizures, its use has been extended to other forms of drug-resistant epilepsy. In this review, we discuss the evidence supporting the use of VNS, its impact on seizure frequency and quality of life, and common adverse effects of this therapy. We also include practical guidance for the approach to and the management of patients with VNS in situ.


2020 ◽  
Vol 8 (3) ◽  
pp. 138-148
Author(s):  
Xiaoya Qin

Vagus nerve stimulation (VNS) is a neuromodulation therapy increasingly used for treating drug-resistant epilepsy. However, it remains to be determined which patients are best suited for the treatment, and it is difficult to predict the therapeutic effect before the implantation. Mutations in some genes could lead to epilepsy. Here we report two cases of pediatric patients with drug-resistant epilepsy treated by VNS therapy: Patient 1 with ARX mutation achieved good outcomes; Patient 2 with the CDKL5 mutation did not show improvement. Additionally, the therapeutic impact of VNS on brain networks was investigated, hoping to provide some empirical evidence for a better understanding of the mechanism of VNS treatment.


2018 ◽  
Vol 10 ◽  
pp. 78-81 ◽  
Author(s):  
Eduardo Gutiérrez-Maldonado ◽  
Claudia Ivette Ledesma-Ramírez ◽  
Adriana Cristina Pliego-Carrillo ◽  
José Javier Reyes-Lagos

2018 ◽  
Vol 35 (10) ◽  
pp. 1686-1696 ◽  
Author(s):  
Molly F. Purser ◽  
Deirdre M. Mladsi ◽  
Alan Beckman ◽  
Francesca Barion ◽  
John Forsey

Sign in / Sign up

Export Citation Format

Share Document