scholarly journals Nuclear Export Through Nuclear Envelope Remodeling inSaccharomyces cerevisiae

2017 ◽  
Author(s):  
Baojin Ding ◽  
Anne M. Mirza ◽  
James Ashley ◽  
Vivian Budnik ◽  
Mary Munson

ABSTRACTIn eukaryotes, subsets of exported mRNAs are organized into large ribonucleoprotein (megaRNP) granules. How megaRNPs exit the nucleus is unclear, as their diameters are much larger than the nuclear pore complex (NPC) central channel. We previously identified a non-canonical nuclear export mechanism inDrosophila(Speese et al.,Cell2012) and mammals (Ding et al., in preparation), in which megaRNPs exit the nucleus by budding across nuclear envelope (NE) membranes. Here, we present evidence for a similar pathway in the nucleus of the budding yeast S.cerevisiae, which contain morphologically similar granules bearing mRNAs. Wild-type yeast displayed these granules at very low frequency, but this frequency was dramatically increased when the non-essential NPC protein Nup116 was deleted. These granules were not artifacts of defective NPCs; a mutation in the exportinXPO1(CRM1), in which NPCs are normal, induced similar megaRNP upregulation. We hypothesize that a non-canonical nuclear export pathway, analogous to those observed inDrosophilaand in mammalian cells, exists in yeast, and that this pathway is upregulated for use when NPCs or nuclear export are impaired.SUMMARYDing et al., describe a non-canonical mRNA export pathway in budding yeast similar to that observed inDrosophila. This pathway appears upregulated when the NPC is impaired, nuclear envelope integrity is disrupted, or the export factor Xpo1 (CRM1) is defective.


2005 ◽  
Vol 387 (2) ◽  
pp. 295-308 ◽  
Author(s):  
Ben J. L. WILLIAMS ◽  
James R. BOYNE ◽  
Delyth J. GOODWIN ◽  
Louise ROADEN ◽  
Guillaume M. HAUTBERGUE ◽  
...  

HVS (herpesvirus saimiri) is the prototype γ-2 herpesvirus. This is a subfamily of herpesviruses gaining importance since the identification of the first human γ-2 herpesvirus, Kaposi's sarcoma-associated herpesvirus. The HVS ORF 57 (open reading frame 57) protein is a multifunctional transregulatory protein homologous with genes identified in all classes of herpesviruses. Recent work has demonstrated that ORF 57 has the ability to bind viral RNA, shuttles between the nucleus and cytoplasm and promotes the nuclear export of viral transcripts. In the present study, we show that ORF 57 shuttles between the nucleus and cytoplasm in a CRM-1 (chromosomal region maintenance 1)-independent manner. ORF 57 interacts with the mRNA export factor REF (RNA export factor) and two other components of the exon junction complex, Y14 and Magoh. The association of ORF 57 with REF stimulates recruitment of the cellular mRNA export factor TAP (Tip-associated protein), and HVS infection triggers the relocalization of REF and TAP from the nuclear speckles to several large clumps within the cell. Using a dominant-negative form of TAP and RNA interference to deplete TAP, we show that it is essential for bulk mRNA export in mammalian cells and is required for ORF 57-mediated viral RNA export. Furthermore, we show that the disruption of TAP reduces viral replication. These results indicate that HVS utilizes ORF 57 to recruit components of the exon junction complex and subsequently TAP to promote viral RNA export through the cellular mRNA export pathway.



2000 ◽  
Vol 20 (23) ◽  
pp. 8767-8782 ◽  
Author(s):  
Jin Ho Yoon ◽  
Dona C. Love ◽  
Anjan Guhathakurta ◽  
John A. Hanover ◽  
Ravi Dhar

ABSTRACT We identified the Schizosaccharomyces pombe mex67 gene (spmex67) as a multicopy suppressor of rae1-167 nup184-1 synthetic lethality and the rae1-167 tsmutation. spMex67p, a 596-amino-acid-long protein, has considerable sequence similarity to the Saccharomyces cerevisiae Mex67p (scMex67p) and human Tap. In contrast toscMEX67, spmex67 is essential for neither growth nor nuclear export of mRNA. However, an spmex67 null mutation (Δmex67) is synthetically lethal with therae1-167 mutation and accumulates poly(A)+ RNA in the nucleus. We identified a central region (149 to 505 amino acids) within spMex67p that associates with a complex containing Rae1p that complements growth and mRNA export defects of therae1-167 Δmex67 synthetic lethality. This region is devoid of RNA-binding, N-terminal nuclear localization, and the C-terminal nuclear pore complex-targeting regions. The (149–505)-green fluorescent protein (GFP) fusion is found diffused throughout the cell. Overexpression of spMex67p inhibits growth and mRNA export and results in the redistribution of the diffused localization of the (149–505)-GFP fusion to the nucleus and the nuclear periphery. These results suggest that spMex67p competes for essential mRNA export factor(s). Finally, we propose that the 149–505 region of spMex67p could act as an accessory factor in Rae1p-dependent transport and that spMex67p participates at various common steps with Rae1p export complexes in promoting the export of mRNA.



mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Rebecca J. Kaddis Maldonado ◽  
Breanna Rice ◽  
Eunice C. Chen ◽  
Kevin M. Tuffy ◽  
Estelle F. Chiari ◽  
...  

ABSTRACT Packaging of genomic RNA (gRNA) by retroviruses is essential for infectivity, yet the subcellular site of the initial interaction between the Gag polyprotein and gRNA remains poorly defined. Because retroviral particles are released from the plasma membrane, it was previously thought that Gag proteins initially bound to gRNA in the cytoplasm or at the plasma membrane. However, the Gag protein of the avian retrovirus Rous sarcoma virus (RSV) undergoes active nuclear trafficking, which is required for efficient gRNA encapsidation (L. Z. Scheifele, R. A. Garbitt, J. D. Rhoads, and L. J. Parent, Proc Natl Acad Sci U S A 99:3944–3949, 2002, https://doi.org/10.1073/pnas.062652199; R. Garbitt-Hirst, S. P. Kenney, and L. J. Parent, J Virol 83:6790–6797, 2009, https://doi.org/10.1128/JVI.00101-09). These results raise the intriguing possibility that the primary contact between Gag and gRNA might occur in the nucleus. To examine this possibility, we created a RSV proviral construct that includes 24 tandem repeats of MS2 RNA stem-loops, making it possible to track RSV viral RNA (vRNA) in live cells in which a fluorophore-conjugated MS2 coat protein is coexpressed. Using confocal microscopy, we observed that both wild-type Gag and a nuclear export mutant (Gag.L219A) colocalized with vRNA in the nucleus. In live-cell time-lapse images, the wild-type Gag protein trafficked together with vRNA as a single ribonucleoprotein (RNP) complex in the nucleoplasm near the nuclear periphery, appearing to traverse the nuclear envelope into the cytoplasm. Furthermore, biophysical imaging methods suggest that Gag and the unspliced vRNA physically interact in the nucleus. Taken together, these data suggest that RSV Gag binds unspliced vRNA to export it from the nucleus, possibly for packaging into virions as the viral genome. IMPORTANCE Retroviruses cause severe diseases in animals and humans, including cancer and acquired immunodeficiency syndromes. To propagate infection, retroviruses assemble new virus particles that contain viral proteins and unspliced vRNA to use as gRNA. Despite the critical requirement for gRNA packaging, the molecular mechanisms governing the identification and selection of gRNA by the Gag protein remain poorly understood. In this report, we demonstrate that the Rous sarcoma virus (RSV) Gag protein colocalizes with unspliced vRNA in the nucleus in the interchromatin space. Using live-cell confocal imaging, RSV Gag and unspliced vRNA were observed to move together from inside the nucleus across the nuclear envelope, suggesting that the Gag-gRNA complex initially forms in the nucleus and undergoes nuclear export into the cytoplasm as a viral ribonucleoprotein (vRNP) complex.



1992 ◽  
Vol 119 (6) ◽  
pp. 1441-1449 ◽  
Author(s):  
R W Wozniak ◽  
G Blobel

The glycoprotein gp210 is located in the "pore membrane," a specialized domain of the nuclear envelope to which the nuclear pore complex (NPC) is anchored. gp210 contains a large cisternal domain, a single transmembrane segment (TM), and a COOH-terminal, 58-amino acid residue cytoplasmic tail (CT) (Wozniak, R. W., E. Bartnik, and G. Blobel. 1989. J. Cell Biol. 108:2083-2092; Greber, U. F., A. Senior, and L. Gerace. 1990. EMBO (Eur. Mol. Biol. Organ.) J. 9:1495-1502). To locate determinants for sorting of gp210 to the pore membrane, we constructed various cDNAs coding for wild-type, mutant, and chimeric gp210, and monitored localization of the expressed protein in 3T3 cells by immunofluorescence microscopy using appropriate antibodies. The large cisternal domain of gp210 (95% of its mass) did not reveal any sorting determinants. Surprisingly, the TM of gp210 is sufficient for sorting to the pore membrane. The CT also contains a sorting determinant, but it is weaker than that of the TM. We propose specific lateral association of the transmembrane helices of two proteins to yield either a gp210 homodimer or a heterodimer of gp210 and another protein. The cytoplasmically oriented tails of these dimers may bind cooperatively to the adjacent NPCs. In addition, we demonstrate that gp210 co-localizes with cytoplasmically dispersed nucleoporins, suggesting a cytoplasmic association of these components.



2000 ◽  
Vol 113 (10) ◽  
pp. 1651-1659 ◽  
Author(s):  
T.D. Allen ◽  
J.M. Cronshaw ◽  
S. Bagley ◽  
E. Kiseleva ◽  
M.W. Goldberg

The enclosure of nuclear contents in eukaryotes means that cells require sites in the boundary that mediate exchange of material between nucleus and cytoplasm. These sites, termed nuclear pore complexes (NPCs), number 100–200 in yeast, a few thousand in mammalian cells and approximately 50 million in the giant nuclei of amphibian oocytes. NPCs are large (125 MDa) macromolecular complexes that comprise 50–100 different proteins in vertebrates. In spite of their size and complex structure, NPCs undergo complete breakdown and reformation at cell division. Transport through NPCs can be rapid (estimated at several hundred molecules/pore/second) and accommodates both passive diffusion of relatively small molecules, and active transport of complexes up to several megadaltons in molecular mass. Each pore can facilitate both import and export. The two processes apparently involve multiple pathways for different cargoes, and their transport signals, transport receptors and adapters, and the molecules (and their regulators) that underpin the transport mechanisms. Over the past few years there has been an increasing interest in the pore complex: structural studies have been followed by elucidation of the biochemical aspects of nuclear import, and subsequent investigations into nuclear export. The current challenge is to understand the interactions between the structural elements of the pore complex and the mechanisms that drive the physical processes of translocation through it.



1998 ◽  
Vol 18 (11) ◽  
pp. 6805-6815 ◽  
Author(s):  
Jens Solsbacher ◽  
Patrick Maurer ◽  
F. Ralf Bischoff ◽  
Gabriel Schlenstedt

ABSTRACT Proteins bearing a nuclear localization signal (NLS) are targeted to the nucleus by the heterodimeric transporter importin. Importin α binds to the NLS and to importin β, which carries it through the nuclear pore complex (NPC). Importin disassembles in the nucleus, evidently by binding of RanGTP to importin β. The importin subunits are exported separately. We investigated the role of Cse1p, theSaccharomyces cerevisiae homologue of human CAS, in nuclear export of Srp1p (yeast importin α). Cse1p is located predominantly in the nucleus but also is present in the cytoplasm and at the NPC. We analyzed the in vivo localization of the importin subunits fused to the green fluorescent protein in wild-type and cse1-1 mutant cells. Srp1p but not importin β accumulated in nuclei ofcse1-1 mutants, which are defective in NLS import but not defective in NLS-independent import pathways. Purified Cse1p binds with high affinity to Srp1p only in the presence of RanGTP. The complex is dissociated by the cytoplasmic RanGTP-binding protein Yrb1p. Combined with the in vivo results, this suggests that a complex containing Srp1p, Cse1p, and RanGTP is exported from the nucleus and is subsequently disassembled in the cytoplasm by Yrb1p. The formation of the trimeric Srp1p-Cse1p-RanGTP complex is inhibited by NLS peptides, indicating that only NLS-free Srp1p will be exported to the cytoplasm.



2003 ◽  
Vol 77 (16) ◽  
pp. 8695-8701 ◽  
Author(s):  
Nathan J. Kelly ◽  
Matthew T. Palmer ◽  
Casey D. Morrow

ABSTRACT Initiation of retrovirus reverse transcription requires the selection of a tRNA primer from the intracellular milieu. To investigate the features of primer selection, a human immunodeficiency virus type 1 (HIV-1) and a murine leukemia virus (MuLV) were created that require yeast tRNAPhe to be supplied in trans for infectivity. Wild-type yeast tRNAPhe expressed in mammalian cells was transported to the cytoplasm and aminoacylated. In contrast, tRNAPhe without the D loop (tRNAPheD−) was retained within the nucleus and did not complement infectivity of either HIV-1 or MuLV; however, infectivity was restored when tRNAPheD− was directly transfected into the cytoplasm of cells. A tRNAPhe mutant (tRNAPheUUA) that did not have the capacity to be aminoacylated was transported to the cytoplasm and did complement infectivity of both HIV-1 and MuLV, albeit at a level less than that with wild-type tRNAPhe. Collectively, our results demonstrate that the tRNA primer captured by HIV-1 and MuLV occurs after nuclear export of tRNA and supports a model in which primer selection for retroviruses is coordinated with tRNA biogenesis at the intracellular site of protein synthesis.



2001 ◽  
Vol 152 (1) ◽  
pp. 141-156 ◽  
Author(s):  
Ben E. Black ◽  
James M. Holaska ◽  
Lyne Lévesque ◽  
Batool Ossareh-Nazari ◽  
Carol Gwizdek ◽  
...  

Soluble factors are required to mediate nuclear export of protein and RNA through the nuclear pore complex (NPC). These soluble factors include receptors that bind directly to the transport substrate and regulators that determine the assembly state of receptor–substrate complexes. We recently reported the identification of NXT1, an NTF2-related export factor that stimulates nuclear protein export in permeabilized cells and undergoes nucleocytoplasmic shuttling in vivo (Black, B.E., L. Lévesque, J.M. Holaska, T.C. Wood, and B.M. Paschal. 1999. Mol. Cell. Biol. 19:8616–8624). Here, we describe the molecular characterization of NXT1 in the context of the Crm1-dependent export pathway. We find that NXT1 binds directly to Crm1, and that the interaction is sensitive to the presence of Ran-GTP. Moreover, mutations in NXT1 that reduce binding to Crm1 inhibit the activity of NXT1 in nuclear export assays. We show that recombinant Crm1 and Ran are sufficient to reconstitute nuclear translocation of a Rev reporter protein from the nucleolus to an antibody accessible site on the cytoplasmic side of the NPC. Further progress on the export pathway, including the terminal step of Crm1 and Rev reporter protein release, requires NXT1. We propose that NXT1 engages with the export complex in the nucleoplasm, and that it facilitates delivery of the export complex to a site on the cytoplasmic side of NPC where the receptor and substrate are released into the cytoplasm.



1995 ◽  
Vol 131 (6) ◽  
pp. 1699-1713 ◽  
Author(s):  
M K Iovine ◽  
J L Watkins ◽  
S R Wente

Nup116p is a member of a family of five yeast nuclear pore complex (NPC) proteins that share an amino terminal region of repetitive tetrapeptide "GLFG" motifs. Previous experiments characterized the unique morphological perturbations that occur in a nup116 null mutant: temperature-sensitive formation of nuclear envelope seals over the cytoplasmic face of the NPC (Wente, S. R., and G. Blobel. 1993. J. Cell Biol. 123:275-284). Three approaches have been taken to dissect the structural basis for Nup116p's role in NPC function. First, deletion mutagenesis analysis of NUP116 revealed that the GLFG region was required for NPC function. This was not true for the other four yeast GLFG family members (Nup49p, Nup57p, Nup100p, and Nup145p). Moreover, deletion of either half of Nup116p's GLFG repeats or replacement of Nup116p's GLFG region with either Nup100p's GLFG region or Nsp1p's FXFG repetitive region abolishes the function of Nup116p. At a semipermissive growth temperature, the cells lacking Nup116p's GLFG region displayed a diminished capacity for nuclear import. Second, overexpression of Nup116p's GLFG region severely inhibited cell growth, rapidly blocked polyadenylated-RNA export, and fragmented the nucleolus. Although it inhibited nuclear export, the overexpressed GLFG region appeared predominantly localized in the cytoplasm and NPC/nuclear envelope structure was not perturbed in thin section electron micrographs. Finally, using biochemical and two-hybrid analysis, an interaction was characterized between Nup116p's GLFG region and Kap95p, an essential yeast homologue of the vertebrate nuclear import factor p97/Imp90/karopherin beta. These data show that Nup116p's GLFG region has an essential role in mediating nuclear transport.



2004 ◽  
Vol 24 (3) ◽  
pp. 1155-1167 ◽  
Author(s):  
Daniel Forler ◽  
Gwénaël Rabut ◽  
Francesca D. Ciccarelli ◽  
Andrea Herold ◽  
Thomas Köcher ◽  
...  

ABSTRACT Metazoan NXF1-p15 heterodimers promote the nuclear export of bulk mRNA across nuclear pore complexes (NPCs). In vitro, NXF1-p15 forms a stable complex with the nucleoporin RanBP2/Nup358, a component of the cytoplasmic filaments of the NPC, suggesting a role for this nucleoporin in mRNA export. We show that depletion of RanBP2 from Drosophila cells inhibits proliferation and mRNA export. Concomitantly, the localization of NXF1 at the NPC is strongly reduced and a significant fraction of this normally nuclear protein is detected in the cytoplasm. Under the same conditions, the steady-state subcellular localization of other nuclear or cytoplasmic proteins and CRM1-mediated protein export are not detectably affected, indicating that the release of NXF1 into the cytoplasm and the inhibition of mRNA export are not due to a general defect in NPC function. The specific role of RanBP2 in the recruitment of NXF1 to the NPC is highlighted by the observation that depletion of CAN/Nup214 also inhibits cell proliferation and mRNA export but does not affect NXF1 localization. Our results indicate that RanBP2 provides a major binding site for NXF1 at the cytoplasmic filaments of the NPC, thereby restricting its diffusion in the cytoplasm after NPC translocation. In RanBP2-depleted cells, NXF1 diffuses freely through the cytoplasm. Consequently, the nuclear levels of the protein decrease and export of bulk mRNA is impaired.



Sign in / Sign up

Export Citation Format

Share Document