scholarly journals A label-free approach to detect ligand binding to cell surface proteins in real time

2018 ◽  
Author(s):  
Verena Burtscher ◽  
Matej Hotka ◽  
Yang Li ◽  
Michael Freissmuth ◽  
Walter Sandtner

AbstractElectrophysiological recordings allow for monitoring the operation of proteins with high temporal resolution down to the single molecule level. This technique has been exploited to track either ion flow arising from channel opening or the synchronized movement of charged residues and/or ions within the membrane electric field. Here, we describe a novel type of current by using the serotonin transporter (SERT) as a model. We examined transient currents elicited on rapid application of specific SERT inhibitors. Our analysis shows that these currents originate from ligand binding and not from a conformational change. The Gouy-Chapman model predicts that a ligand-induced elimination/neutralization of surface charge must produce a displacement current and related apparent changes in membrane capacitance. Here we verified these predictions with SERT. Our observations demonstrate that ligand binding to a protein can be monitored in real time and in a label-free manner by recording the membrane capacitance.

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Verena Burtscher ◽  
Matej Hotka ◽  
Yang Li ◽  
Michael Freissmuth ◽  
Walter Sandtner

Electrophysiological recordings allow for monitoring the operation of proteins with high temporal resolution down to the single molecule level. This technique has been exploited to track either ion flow arising from channel opening or the synchronized movement of charged residues and/or ions within the membrane electric field. Here, we describe a novel type of current by using the serotonin transporter (SERT) as a model. We examined transient currents elicited on rapid application of specific SERT inhibitors. Our analysis shows that these currents originate from ligand binding and not from a long-range conformational change. The Gouy-Chapman model predicts that adsorption of charged ligands to surface proteins must produce displacement currents and related apparent changes in membrane capacitance. Here we verified these predictions with SERT. Our observations demonstrate that ligand binding to a protein can be monitored in real time and in a label-free manner by recording the membrane capacitance.


2018 ◽  
Author(s):  
Verena Burtscher ◽  
Matej Hotka ◽  
Yang Li ◽  
Michael Freissmuth ◽  
Walter Sandtner

2016 ◽  
Vol 110 (3) ◽  
pp. 145a
Author(s):  
Erik G. Hedlund ◽  
Sviatlana Shashkova ◽  
Adam J.M. Wollman ◽  
Stefan Hohmann ◽  
Mark C. Leake

Small Methods ◽  
2017 ◽  
Vol 1 (5) ◽  
pp. 1700071 ◽  
Author(s):  
Chunhui Gu ◽  
Chuancheng Jia ◽  
Xuefeng Guo

2018 ◽  
Vol 114 (3) ◽  
pp. 381a
Author(s):  
Nikolas Hundt ◽  
Andrew Tyler ◽  
Gavin Young ◽  
Daniel Cole ◽  
Adam J. Fineberg ◽  
...  

2019 ◽  
Author(s):  
Xiaoyi Wang ◽  
Mark D. Wilkinson ◽  
Xiaoyan Lin ◽  
Ren Ren ◽  
Keith Willison ◽  
...  

AbstractActin is a key protein in the dynamic processes within the eukaryotic cell. To date, methods exploring the molecular state of actin are limited to insights gained from structural approaches, providing a snapshot of protein folding, or methods that require chemical modifications compromising actin monomer thermostability. Nanopore sensing permits label-free investigation of native proteins and is ideally suited to study proteins such as actin that require specialised buffers and cofactors. Using nanopores we determined the state of actin at the macromolecular level (filamentous or globular) and in its monomeric form bound to inhibitors. We revealed urea-dependent and voltage-dependent transitional states and observed unfolding process within which sub-populations of transient actin oligomers are visible. We detected, in real-time, drug-binding and filament-growth events at the single-molecule level. This enabled us to calculate binding stoichiometries and to propose a model for protein dynamics using unmodified, native actin molecules, demostrating the promise of nanopores sensing for in-depth understanding of protein folding landscapes and for drug discovery.


Author(s):  
Matthieu Lagardère ◽  
Ingrid Chamma ◽  
Emmanuel Bouilhol ◽  
Macha Nikolski ◽  
Olivier Thoumine

AbstractFluorescence live-cell and super-resolution microscopy methods have considerably advanced our understanding of the dynamics and mesoscale organization of macro-molecular complexes that drive cellular functions. However, different imaging techniques can provide quite disparate information about protein motion and organization, owing to their respective experimental ranges and limitations. To address these limitations, we present here a unified computer program that allows one to model and predict membrane protein dynamics at the ensemble and single molecule level, so as to reconcile imaging paradigms and quantitatively characterize protein behavior in complex cellular environments. FluoSim is an interactive real-time simulator of protein dynamics for live-cell imaging methods including SPT, FRAP, PAF, and FCS, and super-resolution imaging techniques such as PALM, dSTORM, and uPAINT. The software, thoroughly validated against experimental data on the canonical neurexin-neuroligin adhesion complex, integrates diffusion coefficients, binding rates, and fluorophore photo-physics to calculate in real time the distribution of thousands of independent molecules in 2D cellular geometries, providing simulated data of protein dynamics and localization directly comparable to actual experiments.


RSC Advances ◽  
2019 ◽  
Vol 9 (39) ◽  
pp. 22705-22712 ◽  
Author(s):  
Evan Angelo Mondarte ◽  
Tatsuhiro Maekawa ◽  
Takashi Nyu ◽  
Hiroyuki Tahara ◽  
Ganchimeg Lkhamsuren ◽  
...  

Energy landscape illustration from the streptavidin–biotin binding dynamics observed in high temporal-resolution AFM.


Sign in / Sign up

Export Citation Format

Share Document