scholarly journals Natural variation in stomata size contributes to the local adaptation of water-use efficiency in Arabidopsis thaliana

2018 ◽  
Author(s):  
H. Dittberner ◽  
A. Korte ◽  
T. Mettler-Altmann ◽  
A.P.M. Weber ◽  
G. Monroe ◽  
...  

AbstractStomata control gas exchanges between the plant and the atmosphere. How natural variation in stomata size and density contributes to resolve trade-offs between carbon uptake and water-loss in response to local climatic variation is not yet understood. We developed an automated confocal microscopy approach to characterize natural genetic variation in stomatal patterning in 330 fully-sequenced Arabidopsis thaliana accessions collected throughout the European range of the species. We compared this to variation in water-use efficiency, measured as carbon isotope discrimination (δ13C). We detect substantial genetic variation for stomata size and density segregating within Arabidopsis thaliana. A positive correlation between stomata size and δ13C further suggests that this variation has consequences on water-use efficiency. Genome-wide association analyses indicate a complex genetic architecture underlying not only variation in stomata patterning but also to its co-variation with carbon uptake parameters. Yet, we report two novel QTL affecting δ13C independently of stomata patterning. This suggests that, in A. thaliana, both morphological and physiological variants contribute to genetic variance in water-use efficiency. Patterns of regional differentiation and co-variation with climatic parameters indicate that natural selection has contributed to shape some of this variation, especially in Southern Sweden, where water availability is more limited in spring relative to summer. These conditions are expected to favor the evolution of drought avoidance mechanisms over drought escape strategies.

2013 ◽  
Vol 119 (1-2) ◽  
pp. 119-129 ◽  
Author(s):  
Hsien Ming Easlon ◽  
Krishna S. Nemali ◽  
James H. Richards ◽  
David T. Hanson ◽  
Thomas E. Juenger ◽  
...  

2018 ◽  
Vol 27 (20) ◽  
pp. 4052-4065 ◽  
Author(s):  
Hannes Dittberner ◽  
Arthur Korte ◽  
Tabea Mettler-Altmann ◽  
Andreas P. M. Weber ◽  
Grey Monroe ◽  
...  

2019 ◽  
Vol 124 (4) ◽  
pp. 581-589 ◽  
Author(s):  
Michael Papacek ◽  
Alexander Christmann ◽  
Erwin Grill

Abstract Background and Aims Water deficit is the single most important factor limiting plant productivity in the field. Poplar is a crop used for second-generation bioenergy production that can be cultivated on marginal land without competing for land use in food production. Poplar has a high demand for water, which makes improving its water use efficiency (WUE) an attractive goal. Recently, we showed that enhanced expression of specific receptors of arabidopsis for the phytohormone abscisic acid (ABA) can improve WUE in arabidopsis and water productivity, i.e. more biomass is formed per unit of water over time. In this study, we examined whether ABA receptors from poplar can enhance WUE and water productivity in arabidopsis. Methods ABA receptors from poplar were stably introduced into arabidopsis for analysis of their effect on water use efficiency. Physiological analysis included growth assessment and gas exchange measurements. Key Results The data presented here are in agreement with the functionality of poplar ABA receptors in arabidopsis, which led to ABA-hypersensitive seed germination and root growth. In addition, arabidopsis lines expressing poplar RCAR10, but not RCAR9, showed increased WUE by up to 26 % compared with the wild type with few trade-offs in growth that also resulted in higher water productivity during drought. The improved WUE was mediated by reduced stomatal conductance, a steeper CO2 gradient at the leaf boundary and sustained photosynthesis resulting in an increased intrinsic WUE (iWUE). Conclusions The analysis is a case study supporting the use of poplar ABA receptors for improving WUE and showing the feasibility of using a heterologous expression strategy for generating plants with improved water productivity.


Plant Science ◽  
2016 ◽  
Vol 251 ◽  
pp. 65-74 ◽  
Author(s):  
S. Vialet-Chabrand ◽  
J.S.A. Matthews ◽  
O. Brendel ◽  
M.R. Blatt ◽  
Y. Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document