scholarly journals Parp3 promotes long-range end-joining in murine cells

2018 ◽  
Author(s):  
Jacob V. Layer ◽  
J. Patrick Cleary ◽  
Alexander J. Brown ◽  
Kristen E. Stevenson ◽  
Sara N. Morrow ◽  
...  

AbstractChromosomal rearrangements, including translocations, are early and essential events in the formation of many tumors. Previous studies that defined the genetic requirements for rearrangement formation have identified differences between murine and human cells, most notably in the role of classical‐ and alternative-nonhomologous end joining factors (NHEJ). We reported that poly(ADP)ribose polymerase 3 (PARP3) promotes chromosomal rearrangements induced by endonucleases in multiple human cell types. In contrast to c-NHEJ factors, we show here that Parp3 also promotes rearrangements in murine cells, including translocations in murine embryonic stem cells (mESCs), class switch recombination in primary B cells and inversions in tail fibroblasts that generate Eml4-Alk fusions. In mESCs, Parp3-deficient cells had shorter deletion lengths at translocation junctions. This was corroborated using next-generation sequencing of Eml4-Alk junctions in tail fibroblasts and is consistent with a role for Parp3 in promoting the processing of DNA double-strand breaks. We confirmed a previous report that Parp1 also promotes rearrangement formation. In contrast with Parp3, rearrangement junctions in the absence of Parp1 had longer deletion lengths, suggesting Parp1 may suppress DSB processing. Together, these data indicate that Parp3 and Parp1 promote rearrangements with distinct phenotypes.

2018 ◽  
Vol 115 (40) ◽  
pp. 10076-10081 ◽  
Author(s):  
Jacob V. Layer ◽  
J. Patrick Cleary ◽  
Alexander J. Brown ◽  
Kristen E. Stevenson ◽  
Sara N. Morrow ◽  
...  

Chromosomal rearrangements, including translocations, are early and essential events in the formation of many tumors. Previous studies that defined the genetic requirements for rearrangement formation have identified differences between murine and human cells, most notably in the role of classic and alternative nonhomologous end-joining (NHEJ) factors. We reported that poly(ADP)ribose polymerase 3 (PARP3) promotes chromosomal rearrangements induced by endonucleases in multiple human cell types. We show here that in contrast to classic (c-NHEJ) factors, Parp3 also promotes rearrangements in murine cells, including translocations in murine embryonic stem cells (mESCs), class–switch recombination in primary B cells, and inversions in tail fibroblasts that generateEml4–Alkfusions. In mESCs, Parp3-deficient cells had shorter deletion lengths at translocation junctions. This was corroborated using next-generation sequencing ofEml4–Alkjunctions in tail fibroblasts and is consistent with a role for Parp3 in promoting the processing of DNA double-strand breaks. We confirmed a previous report that Parp1 also promotes rearrangement formation. In contrast with Parp3, rearrangement junctions in the absence of Parp1 had longer deletion lengths, suggesting that Parp1 may suppress double-strand break processing. Together, these data indicate that Parp3 and Parp1 promote rearrangements with distinct phenotypes.


2008 ◽  
Vol 205 (13) ◽  
pp. 3031-3040 ◽  
Author(s):  
Likun Du ◽  
Mirjam van der Burg ◽  
Sergey W. Popov ◽  
Ashwin Kotnis ◽  
Jacques J.M. van Dongen ◽  
...  

DNA double-strand breaks (DSBs) introduced in the switch (S) regions are intermediates during immunoglobulin class switch recombination (CSR). These breaks are subsequently recognized, processed, and joined, leading to recombination of the two S regions. Nonhomologous end-joining (NHEJ) is believed to be the principle mechanism involved in DSB repair during CSR. One important component in NHEJ, Artemis, has however been considered to be dispensable for efficient CSR. In this study, we have characterized the S recombinational junctions from Artemis-deficient human B cells. Sμ–Sα junctions could be amplified from all patients tested and were characterized by a complete lack of “direct” end-joining and a remarkable shift in the use of an alternative, microhomology-based end-joining pathway. Sμ–Sγ junctions could only be amplified from one patient who carries “hypomorphic” mutations. Although these Sμ–Sγ junctions appear to be normal, a significant increase of an unusual type of sequential switching from immunoglobulin (Ig)M, through one IgG subclass, to a different IgG subclass was observed, and the Sγ–Sγ junctions showed long microhomologies. Thus, when the function of Artemis is impaired, varying modes of CSR junction resolution may be used for different S regions. Our findings strongly link Artemis to the predominant NHEJ pathway during CSR.


Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1701-1713 ◽  
Author(s):  
L Kevin Lewis ◽  
Francesca Storici ◽  
Stephen Van Komen ◽  
Shanna Calero ◽  
Patrick Sung ◽  
...  

AbstractThe Rad50:Mre11:Xrs2 (RMX) complex functions in repair of DNA double-strand breaks (DSBs) by recombination and nonhomologous end-joining (NHEJ) and is also required for telomere stability. The Mre11 subunit exhibits nuclease activities in vitro, but the role of these activities in repair in mitotic cells has not been established. In this study we have performed a comparative study of three mutants (mre11-D16A, -D56N, and -H125N) previously shown to have reduced nuclease activities in vitro. In ends-in and ends-out chromosome recombination assays using defined plasmid and oligonucleotide DNA substrates, mre11-D16A cells were as deficient as mre11 null strains, but defects were small in mre11-D56N and -H125N mutants. mre11-D16A cells, but not the other mutants, also displayed strong sensitivity to ionizing radiation, with residual resistance largely dependent on the presence of the partially redundant nuclease Exo1. mre11-D16A mutants were also most sensitive to the S-phase-dependent clastogens hydroxyurea and methyl methanesulfonate but, as previously observed for D56N and H125N mutants, were not defective in NHEJ. Importantly, the affinity of purified Mre11-D16A protein for Rad50 and Xrs2 was indistinguishable from wild type and the mutant protein formed complexes with equivalent stoichiometry. Although the role of the nuclease activity has been questioned in previous studies, the comparative data presented here suggest that the nuclease function of Mre11 is required for RMX-mediated recombinational repair and telomere stabilization in mitotic cells.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yu Chen ◽  
Yi Li ◽  
Jiani Xiong ◽  
Bin Lan ◽  
Xuefeng Wang ◽  
...  

AbstractThe PRKDC gene encodes the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) protein. DNA-PKcs plays an important role in nonhomologous end joining (NHEJ) of DNA double-strand breaks (DSBs) and is also closely related to the establishment of central immune tolerance and the maintenance of chromosome stability. The occurrence and development of different types of tumors and the results of their treatment are also influenced by DNA-PKcs, and it may also predict the results of radiotherapy, chemotherapy, and therapy with immune checkpoint inhibitors (ICIs). Here, we discuss and review the structure and mechanism of action of PRKDC and DNA-PKcs and their relationship with cancer.


2008 ◽  
Vol 205 (13) ◽  
pp. 3079-3090 ◽  
Author(s):  
Jing H. Wang ◽  
Frederick W. Alt ◽  
Monica Gostissa ◽  
Abhishek Datta ◽  
Michael Murphy ◽  
...  

Nonhomologous end-joining (NHEJ) repairs DNA double-strand breaks (DSBs) during V(D)J recombination in developing lymphocytes and during immunoglobulin (Ig) heavy chain (IgH) class switch recombination (CSR) in peripheral B lymphocytes. We now show that CD21-cre–mediated deletion of the Xrcc4 NHEJ gene in p53-deficient peripheral B cells leads to recurrent surface Ig-negative B lymphomas (“CXP lymphomas”). Remarkably, CXP lymphomas arise from peripheral B cells that had attempted both receptor editing (secondary V[D]J recombination of Igκ and Igλ light chain genes) and IgH CSR subsequent to Xrcc4 deletion. Correspondingly, CXP tumors frequently harbored a CSR-based reciprocal chromosomal translocation that fused IgH to c-myc, as well as large chromosomal deletions or translocations involving Igκ or Igλ, with the latter fusing Igλ to oncogenes or to IgH. Our findings reveal peripheral B cells that have undergone both editing and CSR and show them to be common progenitors of CXP tumors. Our studies also reveal developmental stage-specific mechanisms of c-myc activation via IgH locus translocations. Thus, Xrcc4/p53-deficient pro–B lymphomas routinely activate c-myc by gene amplification, whereas Xrcc4/p53-deficient peripheral B cell lymphomas routinely ectopically activate a single c-myc copy.


2004 ◽  
Vol 165 (4) ◽  
pp. 459-464 ◽  
Author(s):  
Irene M. Ward ◽  
Bernardo Reina-San-Martin ◽  
Alexandru Olaru ◽  
Kay Minn ◽  
Koji Tamada ◽  
...  

53BP1 participates early in the DNA damage response and is involved in cell cycle checkpoint control. Moreover, the phenotype of mice and cells deficient in 53BP1 suggests a defect in DNA repair (Ward et al., 2003b). Therefore, we asked whether or not 53BP1 would be required for the efficient repair of DNA double strand breaks. Our data indicate that homologous recombination by gene conversion does not depend on 53BP1. Moreover, 53BP1-deficient mice support normal V(D)J recombination, indicating that 53BP1 is not required for “classic” nonhomologous end joining. However, class switch recombination is severely impaired in the absence of 53BP1, suggesting that 53BP1 facilitates DNA end joining in a way that is not required or redundant for the efficient closing of RAG-induced strand breaks. These findings are similar to those observed in mice or cells deficient in the tumor suppressors ATM and H2AX, further suggesting that the functions of ATM, H2AX, and 53BP1 are closely linked.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Tovah A. Day ◽  
Jacob V. Layer ◽  
J. Patrick Cleary ◽  
Srijoy Guha ◽  
Kristen E. Stevenson ◽  
...  

Abstract Chromosomal rearrangements are essential events in the pathogenesis of both malignant and nonmalignant disorders, yet the factors affecting their formation are incompletely understood. Here we develop a zinc-finger nuclease translocation reporter and screen for factors that modulate rearrangements in human cells. We identify UBC9 and RAD50 as suppressors and 53BP1, DDB1 and poly(ADP)ribose polymerase 3 (PARP3) as promoters of chromosomal rearrangements across human cell types. We focus on PARP3 as it is dispensable for murine viability and has druggable catalytic activity. We find that PARP3 regulates G quadruplex (G4) DNA in response to DNA damage, which suppresses repair by nonhomologous end-joining and homologous recombination. Chemical stabilization of G4 DNA in PARP3 −/− cells leads to widespread DNA double-strand breaks and synthetic lethality. We propose a model in which PARP3 suppresses G4 DNA and facilitates DNA repair by multiple pathways.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 550
Author(s):  
Matvey Mikhailovich Murashko ◽  
Ekaterina Mikhailovna Stasevich ◽  
Anton Markovich Schwartz ◽  
Dmitriy Vladimirovich Kuprash ◽  
Aksinya Nicolaevna Uvarova ◽  
...  

Incorrect reparation of DNA double-strand breaks (DSB) leading to chromosomal rearrangements is one of oncogenesis’s primary causes. Recently published data elucidate the key role of various types of RNA in DSB formation, recognition and repair. With growing interest in RNA biology, increasing RNAs are classified as crucial at the different stages of the main pathways of DSB repair in eukaryotic cells: nonhomologous end joining (NHEJ) and homology-directed repair (HDR). Gene mutations or variation in expression levels of such RNAs can lead to local DNA repair defects, increasing the chromosome aberration frequency. Moreover, it was demonstrated that some RNAs could stimulate long-range chromosomal rearrangements. In this review, we discuss recent evidence demonstrating the role of various RNAs in DSB formation and repair. We also consider how RNA may mediate certain chromosomal rearrangements in a sequence-specific manner.


2005 ◽  
Vol 25 (3) ◽  
pp. 896-906 ◽  
Author(s):  
James M. Daley ◽  
Thomas E. Wilson

ABSTRACT The ends of spontaneously occurring double-strand breaks (DSBs) may contain various lengths of single-stranded DNA, blocking lesions, and gaps and flaps generated by end annealing. To investigate the processing of such structures, we developed an assay in which annealed oligonucleotides are ligated onto the ends of a linearized plasmid which is then transformed into Saccharomyces cerevisiae. Reconstitution of a marker occurs only when the oligonucleotides are incorporated and repair is in frame, permitting rapid analysis of complex DSB ends. Here, we created DSBs with compatible overhangs of various lengths and asked which pathways are required for their precise repair. Three mechanisms of rejoining were observed, regardless of overhang polarity: nonhomologous end joining (NHEJ), a Rad52-dependent single-strand annealing-like pathway, and a third mechanism independent of the first two mechanisms. DSBs with overhangs of less than 4 bases were mainly repaired by NHEJ. Repair became less dependent on NHEJ when the overhangs were longer or had a higher GC content. Repair of overhangs greater than 8 nucleotides was as much as 150-fold more efficient, impaired 10-fold by rad52 mutation, and highly accurate. Reducing the microhomology extent between long overhangs reduced their repair dramatically, to less than NHEJ of comparable short overhangs. These data support a model in which annealing energy is a primary determinant of the rejoining efficiency and mechanism.


2019 ◽  
Vol 47 (17) ◽  
pp. 9410-9422 ◽  
Author(s):  
Andrea M Kaminski ◽  
Kishore K Chiruvella ◽  
Dale A Ramsden ◽  
Thomas A Kunkel ◽  
Katarzyna Bebenek ◽  
...  

Abstract DNA double-strand breaks (DSBs) resulting from reactive oxygen species generated by exposure to UV and ionizing radiation are characterized by clusters of lesions near break sites. Such complex DSBs are repaired slowly, and their persistence can have severe consequences for human health. We have therefore probed DNA break repair containing a template 8-oxo-7,8-dihydro-2′-guanosine (8OG) by Family X Polymerase μ (Pol μ) in steady-state kinetics and cell-based assays. Pol μ tolerates 8OG-containing template DNA substrates, and the filled products can be subsequently ligated by DNA Ligase IV during Nonhomologous end-joining. Furthermore, Pol μ exhibits a strong preference for mutagenic bypass of 8OG by insertion of adenine. Crystal structures reveal that the template 8OG is accommodated in the Pol μ active site with none of the DNA substrate distortions observed for Family X siblings Pols β or λ. Kinetic characterization of template 8OG bypass indicates that Pol μ inserts adenosine nucleotides with weak sugar selectivity and, given the high cellular concentration of ATP, likely performs its role in repair of complex 8OG-containing DSBs using ribonucleotides.


Sign in / Sign up

Export Citation Format

Share Document