scholarly journals X chromosome and autosomal recombination are differentially sensitive to disruptions in SC maintenance

2018 ◽  
Author(s):  
Katherine Kretovich Billmyre ◽  
Cori K. Cahoon ◽  
G. Matthew Heenan ◽  
Emily Wesley ◽  
Zulin Yu ◽  
...  

AbstractThe synaptonemal complex (SC) is a conserved meiotic structure that regulates the repair of double strand breaks (DSBs) into crossovers or gene conversions. The removal of any central region SC component, such as the Drosophila melanogaster transverse filament protein C(3)G, causes a complete loss of SC structure and crossovers. To better understand the role of the SC in meiosis, we used CRISPR/Cas9 to construct three in-frame deletions within the predicted coiled-coil region of the C(3)G protein. These three deletion mutants disrupt SC maintenance at different times during pachytene and exhibit distinct defects in key meiotic processes, allowing us to define the stages of pachytene when the SC is necessary for homolog pairing and recombination. Our studies demonstrate that the X chromosome and the autosomes display substantially different defects in pairing and recombination when SC structure is disrupted, suggesting that the X chromosome is potentially regulated differently than the autosomes.

2019 ◽  
Vol 116 (43) ◽  
pp. 21641-21650 ◽  
Author(s):  
Katherine Kretovich Billmyre ◽  
Cori K. Cahoon ◽  
G. Matthew Heenan ◽  
Emily R. Wesley ◽  
Zulin Yu ◽  
...  

The synaptonemal complex (SC) is a conserved meiotic structure that regulates the repair of double-strand breaks (DSBs) into crossovers or gene conversions. The removal of any central-region SC component, such as the Drosophila melanogaster transverse filament protein C(3)G, causes a complete loss of SC structure and crossovers. To better understand the role of the SC in meiosis, we used CRISPR/Cas9 to construct 3 in-frame deletions within the predicted coiled-coil region of the C(3)G protein. Since these 3 deletion mutations disrupt SC maintenance at different times during pachytene and exhibit distinct defects in key meiotic processes, they allow us to define the stages of pachytene when the SC is necessary for homolog pairing and recombination during pachytene. Our studies demonstrate that the X chromosome and the autosomes display substantially different defects in pairing and recombination when SC structure is disrupted, suggesting that the X chromosome is potentially regulated differently from the autosomes.


2017 ◽  
Vol 37 (24) ◽  
Author(s):  
Sucheta Arora ◽  
Rajashree A. Deshpande ◽  
Martin Budd ◽  
Judy Campbell ◽  
America Revere ◽  
...  

ABSTRACT Sae2 promotes the repair of DNA double-strand breaks in Saccharomyces cerevisiae. The role of Sae2 is linked to the Mre11/Rad50/Xrs2 (MRX) complex, which is important for the processing of DNA ends into single-stranded substrates for homologous recombination. Sae2 has intrinsic endonuclease activity, but the role of this activity has not been assessed independently from its functions in promoting Mre11 nuclease activity. Here we identify and characterize separation-of-function mutants that lack intrinsic nuclease activity or the ability to promote Mre11 endonucleolytic activity. We find that the ability of Sae2 to promote MRX nuclease functions is important for DNA damage survival, particularly in the absence of Dna2 nuclease activity. In contrast, Sae2 nuclease activity is essential for DNA repair when the Mre11 nuclease is compromised. Resection of DNA breaks is impaired when either Sae2 activity is blocked, suggesting roles for both Mre11 and Sae2 nuclease activities in promoting the processing of DNA ends in vivo. Finally, both activities of Sae2 are important for sporulation, indicating that the processing of meiotic breaks requires both Mre11 and Sae2 nuclease activities.


2021 ◽  
Author(s):  
Alexandre Nore ◽  
Ariadna B Juarez-Martinez ◽  
Julie AJ Clement ◽  
Christine Brun ◽  
Bouboub Diagouraga ◽  
...  

Meiosis requires the formation of programmed DNA double strand breaks (DSBs), essential for fertility and for generating genetic diversity. In male and female meiotic cells, DSBs are induced by the catalytic activity of the TOPOVIL complex formed by SPO11 and TOPOVIBL. To ensure genomic integrity, DNA cleavage activity is tightly regulated, and several accessory factors (REC114, MEI4, IHO1, and MEI1) are needed for DSB formation in mice. How and when these proteins act is not understood. Here, we show that REC114 is a direct partner of TOPOVIBL, and identified their conserved interacting domains by structural analysis. We then analysed the role of this interaction by monitoring meiotic DSBs in female and male mice carrying point mutations in TOPOVIBL that decrease or disrupt its binding to REC114. In these mutants, DSB activity was strongly reduced genome-wide in oocytes, but only in sub-telomeric regions in spermatocytes. In addition, in mutant spermatocytes, DSB activity was delayed in autosomes. These results provide evidence that REC114 is a key member of the TOPOVIL catalytic complex, and that the REC114/TOPOVIBL interaction ensures the efficiency and timing of DSB activity by integrating specific chromosomal features.


2019 ◽  
Vol 47 (17) ◽  
pp. 9160-9179 ◽  
Author(s):  
Soon Young Hwang ◽  
Mi Ae Kang ◽  
Chul Joon Baik ◽  
Yejin Lee ◽  
Ngo Thanh Hang ◽  
...  

Abstract The pleiotropic CCCTC-binding factor (CTCF) plays a role in homologous recombination (HR) repair of DNA double-strand breaks (DSBs). However, the precise mechanistic role of CTCF in HR remains largely unclear. Here, we show that CTCF engages in DNA end resection, which is the initial, crucial step in HR, through its interactions with MRE11 and CtIP. Depletion of CTCF profoundly impairs HR and attenuates CtIP recruitment at DSBs. CTCF physically interacts with MRE11 and CtIP and promotes CtIP recruitment to sites of DNA damage. Subsequently, CTCF facilitates DNA end resection to allow HR, in conjunction with MRE11–CtIP. Notably, the zinc finger domain of CTCF binds to both MRE11 and CtIP and enables proficient CtIP recruitment, DNA end resection and HR. The N-terminus of CTCF is able to bind to only MRE11 and its C-terminus is incapable of binding to MRE11 and CtIP, thereby resulting in compromised CtIP recruitment, DSB resection and HR. Overall, this suggests an important function of CTCF in DNA end resection through the recruitment of CtIP at DSBs. Collectively, our findings identify a critical role of CTCF at the first control point in selecting the HR repair pathway.


1999 ◽  
Vol 9 (14) ◽  
pp. 767-770 ◽  
Author(s):  
Sang Eun Lee ◽  
Frédéric Pâques ◽  
Jason Sylvan ◽  
James E. Haber

2004 ◽  
Vol 186 (23) ◽  
pp. 7905-7913 ◽  
Author(s):  
Jacobo Zuñiga-Castillo ◽  
David Romero ◽  
Jaime M. Martínez-Salazar

ABSTRACT Single-strand gaps (SSGs) and double-strand breaks (DSBs) are the major initiation sites for recombination. In bacteria, the SSGs are repaired by RecFOR, while the DSBs are processed by RecBCD in gram-negative bacteria and AddAB in gram-positive bacteria. Unexpectedly, instead of recBCD genes, the addAB genes were found in members of the α-proteobacteria group (gram negative). Taking Rhizobium etli as a model, the role of recF and addAB genes in homologous recombination and repair of damaged DNA was evaluated. Inactivation of either recF or addA provoked strong sensitivity to UV radiation and mitomycin C, while an additive effect was observed in the recF-addA mutant. The DSBs generated by nalidixic acid caused low viability only in the addA mutant. The recombination frequency of large and small plasmids was reduced in the recF mutant (24- and 36-fold, respectively), whereas a slight decrease (threefold) in the addA mutant was observed. Moreover, an additive effect (47- and 90-fold, respectively) was observed in the double mutant, but it was not as dramatic as that in a recA mutant. Interestingly, the frequency of deletion and Campbell-type recombination was slightly affected in either single or double mutants. These results suggest that another pathway exists that allows plasmid and Campbell-type recombination in the absence of recF and addA genes.


2006 ◽  
Vol 26 (10) ◽  
pp. 3683-3694 ◽  
Author(s):  
Hsin-Yen Wu ◽  
Sean M. Burgess

ABSTRACT Dynamic telomere repositioning is a prominent feature of meiosis. Deletion of a telomere-associated protein, Ndj1, results in the failure of both attachment and clustering of telomeres at the nuclear envelope and delays several landmarks of meiosis I, such as pairing, synaptonemal complex formation, and timing of the meiosis I division. We explored the role of Ndj1 in meiotic recombination, which occurs through the formation and repair of programmed double-strand breaks. The ndj1Δ mutation allows for the formation of the first detectable strand invasion intermediate (i.e., single-end invasion) with wild-type kinetics; however, it confers a delay in the formation of the double-Holliday junction intermediate and both crossover and noncrossover products. These results challenge the widely held notion that clustering of telomeres in meiosis promotes the ability of homologous chromosomes to find one another in budding Saccharomyces cerevisiae. We propose that an Ndj1-dependent function is critical for stabilizing analogous strand invasion intermediates that exist in two separate branches of the bifurcated pathway, leading to either noncrossover or crossover formation. These findings provide a link between telomere dynamics and a distinct mechanistic step of meiotic recombination that follows the homology search.


Sign in / Sign up

Export Citation Format

Share Document