catalytic complex
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 21)

H-INDEX

16
(FIVE YEARS 3)

2022 ◽  
Vol 8 ◽  
Author(s):  
Peng Gong

Nucleotide addition cycle (NAC) is a fundamental process utilized by nucleic acid polymerases when carrying out nucleic acid biosynthesis. An induced-fit mechanism is usually taken by these polymerases upon NTP/dNTP substrate binding, leading to active site closure and formation of a phosphodiester bond. In viral RNA-dependent RNA polymerases, the post-chemistry translocation is stringently controlled by a structurally conserved motif, resulting in asymmetric movement of the template-product duplex. This perspective focuses on viral RdRP NAC and related mechanisms that have not been structurally clarified to date. Firstly, RdRP movement along the template strand in the absence of catalytic events may be relevant to catalytic complex dissociation or proofreading. Secondly, pyrophosphate or non-cognate NTP-mediated cleavage of the product strand 3′-nucleotide can also play a role in reactivating paused or arrested catalytic complexes. Furthermore, non-cognate NTP substrates, including NTP analog inhibitors, can not only alter NAC when being misincorporated, but also impact on subsequent NACs. Complications and challenges related to these topics are also discussed.


2021 ◽  
Author(s):  
Alexandre Nore ◽  
Ariadna B Juarez-Martinez ◽  
Julie AJ Clement ◽  
Christine Brun ◽  
Bouboub Diagouraga ◽  
...  

Meiosis requires the formation of programmed DNA double strand breaks (DSBs), essential for fertility and for generating genetic diversity. In male and female meiotic cells, DSBs are induced by the catalytic activity of the TOPOVIL complex formed by SPO11 and TOPOVIBL. To ensure genomic integrity, DNA cleavage activity is tightly regulated, and several accessory factors (REC114, MEI4, IHO1, and MEI1) are needed for DSB formation in mice. How and when these proteins act is not understood. Here, we show that REC114 is a direct partner of TOPOVIBL, and identified their conserved interacting domains by structural analysis. We then analysed the role of this interaction by monitoring meiotic DSBs in female and male mice carrying point mutations in TOPOVIBL that decrease or disrupt its binding to REC114. In these mutants, DSB activity was strongly reduced genome-wide in oocytes, but only in sub-telomeric regions in spermatocytes. In addition, in mutant spermatocytes, DSB activity was delayed in autosomes. These results provide evidence that REC114 is a key member of the TOPOVIL catalytic complex, and that the REC114/TOPOVIBL interaction ensures the efficiency and timing of DSB activity by integrating specific chromosomal features.


2021 ◽  
Author(s):  
Han Liao ◽  
Anushri Gaur ◽  
Hunter McConie ◽  
Amirtha Shekar ◽  
Karen Wang ◽  
...  

5-Methylcytosine (m5C) is a base modification broadly found on a variety of RNAs in the human transcriptome. In eukaryotes m5C is catalyzed by enzymes of the NSUN family, which is composed of seven members in humans (NSUN1-7). NOP2/NSUN1 has been mostly characterized in budding yeast as an essential ribosome biogenesis factor required for the deposition of m5C on the 25S rRNA. Although human NOP2/NSUN1 has been known to be an oncogene overexpressed in several types of cancer, its functions remain poorly characterized. To define the roles of human NOP2/NSUN1, we used an miCLIP-seq approach to identify its RNA substrates. Our analysis reveals that vault RNA 1.2 and rRNA are NOP2/NSUN1-specific methylated targets and we further confirm by bisulfite sequencing that NOP2/NSUN1 is responsible for the deposition of m5C at residue 4447 on the 28S rRNA. Depletion of NOP2/NSUN1 impairs cell proliferation, rRNA processing and 60S ribosome biogenesis. Additionally, we find that NOP2/NSUN1 binds to the 5′ETS region of the pre-rRNA transcript and regulates pre-rRNA processing in part through non-catalytic complex formation with box C/D snoRNAs. Our study identifies for the first time the RNA substrates of human NOP2/NSUN1 and reveals additional functions in rRNA processing beyond catalyzing m5C base modification.


2021 ◽  
Author(s):  
Olga V. Artemyeva-Isman ◽  
Andrew C.G. Porter

AbstractImperfect conservation of human pre-mRNA splice sites is necessary to produce alternative isoforms. This flexibility is combined with precision of the message reading frame. Apart from intron-termini GU_AG and the branchpoint A, the most conserved are the exon-end guanine and +5G of the intron-start. Association between these guanines cannot be explained solely by base-pairing with U1snRNA in the early spliceosome complex. U6 succeeds U1 and pairs +5G in the pre-catalytic spliceosome, while U5 binds the exon-end. Current U5snRNA reconstructions by CryoEM cannot explain the conservation of the exon-end G. Conversely, human mutation analyses show that guanines of both exon-termini can suppress splicing mutations. Our U5 hypothesis explains the mechanism of splicing precision and the role of these conserved guanines in the pre-catalytic spliceosome. We propose: 1) Optimal binding register for human exons and U5 - the exon junction positioned at U5Loop1 C39|C38. 2) Common mechanism of base pairing of human U5snRNA with diverse exons and bacterial Ll.LtrB intron with new loci in retrotransposition - guided by base pair geometry. 3) U5 plays a significant role in specific exon recognition in the pre-catalytic spliceosome. Our statistical analyses show increased U5 Watson-Crick pairs with the 5’exon in the absence of +5G at the intron-start. In 5’exon positions -3 and -5 this effect is specific to U5snRNA rather than U1snRNA of the early spliceosome. Increased U5 Watson-Crick pairs with 3’exon position +1 coincide with substitutions of the conserved -3C at the intron 3’end. Based on mutation and X-ray evidence we propose that -3C pairs with U2 G31 juxtaposing the branchpoint and the 3’intron-end. The intron-termini pair, formed in the pre-catalytic spliceosome to be ready for transition after branching, and the early involvement of the 3’intron-end ensure that the 3’exon contacts U5 in the pre-catalytic complex. We suggest that splicing precision is safeguarded cooperatively by U5, U6 and U2snRNAs that stabilise the pre-catalytic complex by Watson-Crick base pairing. In addition, our new U5 model explains the splicing effect of exon-start +1G mutations: U5 Watson-Crick pairs with exon +2C/+3G strongly promote exon inclusion. We discuss potential applications for snRNA-therapeutics and gene repair by reverse splicing.


2021 ◽  
Vol 118 (8) ◽  
pp. e2007328118
Author(s):  
Kenneth Wu ◽  
Khoi Q. Huynh ◽  
Iris Lu ◽  
Moses Moustakim ◽  
Haibin Miao ◽  
...  

Cullin-RING (really intersting new gene) E3 ubiquitin ligases (CRLs) are the largest E3 family and direct numerous protein substrates for proteasomal degradation, thereby impacting a myriad of physiological and pathological processes including cancer. To date, there are no reported small-molecule inhibitors of the catalytic activity of CRLs. Here, we describe high-throughput screening and medicinal chemistry optimization efforts that led to the identification of two compounds, 33-11 and KH-4-43, which inhibit E3 CRL4 and exhibit antitumor potential. These compounds bind to CRL4’s core catalytic complex, inhibit CRL4-mediated ubiquitination, and cause stabilization of CRL4’s substrate CDT1 in cells. Treatment with 33-11 or KH-4-43 in a panel of 36 tumor cell lines revealed cytotoxicity. The antitumor activity was validated by the ability of the compounds to suppress the growth of human tumor xenografts in mice. Mechanistically, the compounds’ cytotoxicity was linked to aberrant accumulation of CDT1 that is known to trigger apoptosis. Moreover, a subset of tumor cells was found to express cullin4 proteins at levels as much as 70-fold lower than those in other tumor lines. The low-cullin4–expressing tumor cells appeared to exhibit increased sensitivity to 33-11/KH-4-43, raising a provocative hypothesis for the role of low E3 abundance as a cancer vulnerability.


Science ◽  
2020 ◽  
Vol 371 (6524) ◽  
pp. 67-71 ◽  
Author(s):  
Valentina Piano ◽  
Amal Alex ◽  
Patricia Stege ◽  
Stefano Maffini ◽  
Gerardo A. Stoppiello ◽  
...  

Open (O) and closed (C) topologies of HORMA-domain proteins are respectively associated with inactive and active states of fundamental cellular pathways. The HORMA protein O-MAD2 converts to C-MAD2 upon binding CDC20. This is rate limiting for assembly of the mitotic checkpoint complex (MCC), the effector of a checkpoint required for mitotic fidelity. A catalyst assembled at kinetochores accelerates MAD2:CDC20 association through a poorly understood mechanism. Using a reconstituted SAC system, we discovered that CDC20 is an impervious substrate for which access to MAD2 requires simultaneous docking on several sites of the catalytic complex. Our analysis indicates that the checkpoint catalyst is substrate assisted and promotes MCC assembly through spatially and temporally coordinated conformational changes in both MAD2 and CDC20. This may define a paradigm for other HORMA-controlled systems.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4787
Author(s):  
Dimitris G. Mintis ◽  
Anastasia Chasapi ◽  
Konstantinos Poulas ◽  
George Lagoumintzis ◽  
Christos T. Chasapis

The ubiquitin pathway required for most proteins’ targeted degradation involves three classes of enzymes: E1-activating enzyme, E2-conjugating enzyme, and E3-ligases. The human Ark2C is the single known E3 ligase that adopts an alternative, Ub-dependent mechanism for the activation of Ub transfer in the pathway. Its RING domain binds both E2-Ub and free Ub with high affinity, resulting in a catalytic active UbR-RING-E2-UbD complex formation. We examined potential changes in the conformational plasticity of the Ark2C RING domain and its ligands in their complexed form within the ubiquitin pathway through molecular dynamics (MD). Three molecular mechanics force fields compared to previous NMR relaxation studies of RING domain of Arkadia were used for effective and accurate assessment of MDs. Our results suggest the Ark2C Ub-RING docking site has a substantial impact on maintaining the conformational rigidity of E2-E3 assembly, necessary for the E3’s catalytic activity. In the UbR-RING-E2-UbD catalytic complex, the UbR molecule was found to have greater mobility than the other Ub, bound to E2. Furthermore, network-based bioinformatics helped us identify E3 RING ligase candidates which potentially exhibit similar structural modules as Ark2C, along with predicted substrates targeted by the Ub-binding RING Ark2C. Our findings could trigger a further exploration of related unrevealed functions of various other E3 RING ligases.


2020 ◽  
Vol 477 (19) ◽  
pp. 3833-3838
Author(s):  
Jie Gao ◽  
Bin Wang ◽  
Huijuan Yu ◽  
Gao Wu ◽  
Cuihong Wan ◽  
...  

Post-translational modifications play important roles in mediating protein functions in a wide variety of cellular events in vivo. HEMK2–TRMT112 heterodimer has been reported to be responsible for both histone lysine methylation and eukaryotic release factor 1 (eRF1) glutamine methylation. However, how HEMK2–TRMT112 complex recognizes and catalyzes eRF1 glutamine methylation is largely unknown. Here, we present two structures of HEMK2–TRMT112, with one bound to SAM and the other bound with SAH and methylglutamine (Qme). Structural analyses of the post-catalytic complex, complemented by mass spectrometry experiments, indicate that the HEMK2 utilizes a specific pocket to accommodate the substrate glutamine and catalyzes the subsequent methylation. Therefore, our work not only throws light on the protein glutamine methylation mechanism, but also reveals the dual activity of HEMK2 by catalyzing the methylation of both Lys and Gln residues.


Sign in / Sign up

Export Citation Format

Share Document