scholarly journals Extensive horizontal exchange of transposable elements in the Drosophila pseudoobscura group

2018 ◽  
Author(s):  
Tom Hill ◽  
Andrea J. Betancourt

AbstractWhile the horizontal transfer of a parasitic element can be a potentially catastrophic, it is increasingly recognized as a common occurrence. The horizontal exchange, or lack of exchange, of TE content between species results in different levels of divergence among a species group in the mobile component of their genomes. Here, we examine differences in the TE content of the Drosophila pseudoobscura species group. We identify several putative horizontal transfer events, and examine the role that horizontal transfer plays in the spread of TE families to new species and the homogenization of TE content in these species. Despite rampant exchange of TE families between species, we find that both TE content differs hugely across the group, likely due to differing activity of each TE family and differing suppression of TEs due to divergence in Y chromosome size, and its resulting effects of TE regulation. Overall, we show that TE content is highly dynamic in this species group, and that it plays a large role in shaping the differences seen between species.Data availabilityAll data used in this study (summarized in table S1) is freely available online through the NCBI short read archive (NCBI SRA: ERR127385, SRR330416, SRR330418, SRR1925723, SRR330426, SRR330420, SRR330423, SRR617430-74). All genomes used are either available through flybase.org or popoolation.at.

F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2644 ◽  
Author(s):  
William P. Gilks ◽  
Tanya M. Pennell ◽  
Ilona Flis ◽  
Matthew T. Webster ◽  
Edward H. Morrow

As part of a study into the molecular genetics of sexually dimorphic complex traits, we used next-generation sequencing to obtain data on genomic variation in an outbred laboratory-adapted fruit fly (Drosophila melanogaster) population. We successfully resequenced the whole genome of 220 hemiclonal females that were heterozygous for the same Berkeley reference line genome (BDGP6/dm6), and a unique haplotype from the outbred base population (LHM). The use of a static and known genetic background enabled us to obtain sequences from whole genome phased haplotypes. We used a BWA-Picard-GATK pipeline for mapping sequence reads to the dm6 reference genome assembly, at a median depth of coverage of 31X, and have made the resulting data publicly-available in the NCBI Short Read Archive (Accession number SRP058502). We used Haplotype Caller to discover and genotype 1,726,931 small genomic variants (SNPs and indels, <200bp). Additionally we detected and genotyped 167 large structural variants (1-100Kb in size) using GenomeStrip/2.0. Sequence and genotype data are publicly-available at the corresponding NCBI databases: Short Read Archive, dbSNP and dbVar (BioProject PRJNA282591). We have also released the unfiltered genotype data, and the code and logs for data processing and summary statistics (https://zenodo.org/communities/sussex_drosophila_sequencing/).


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2644 ◽  
Author(s):  
William P. Gilks ◽  
Tanya M. Pennell ◽  
Ilona Flis ◽  
Matthew T. Webster ◽  
Edward H. Morrow

As part of a study into the molecular genetics of sexually dimorphic complex traits, we used high-throughput sequencing to obtain data on genomic variation in an outbred laboratory-adapted fruit fly (Drosophila melanogaster) population. We successfully resequenced the whole genome of 220 hemiclonal females that were heterozygous for the same Berkeley reference line genome (BDGP6/dm6), and a unique haplotype from the outbred base population (LHM). The use of a static and known genetic background enabled us to obtain sequences from whole-genome phased haplotypes. We used a BWA-Picard-GATK pipeline for mapping sequence reads to the dm6 reference genome assembly, at a median depth-of coverage of 31X, and have made the resulting data publicly-available in the NCBI Short Read Archive (Accession number SRP058502). We used Haplotype Caller to discover and genotype 1,726,931 small genomic variants (SNPs and indels, <200bp). Additionally we detected and genotyped 167 large structural variants (1-100Kb in size) using GenomeStrip/2.0. Sequence and genotype data are publicly-available at the corresponding NCBI databases: Short Read Archive, dbSNP and dbVar (BioProject PRJNA282591). We have also released the unfiltered genotype data, and the code and logs for data processing and summary statistics (https://zenodo.org/communities/sussex_drosophila_sequencing/).


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2644
Author(s):  
William P. Gilks ◽  
Tanya M. Pennell ◽  
Ilona Flis ◽  
Matthew T. Webster ◽  
Edward H. Morrow

As part of a study into the molecular genetics of sexually dimorphic complex traits, we used high-throughput sequencing to obtain data on genomic variation in an outbred laboratory-adapted fruit fly (Drosophila melanogaster) population. We successfully resequenced the whole genome of 220 hemiclonal females that were heterozygous for the same Berkeley reference line genome (BDGP6/dm6), and a unique haplotype from the outbred base population (LHM). The use of a static and known genetic background enabled us to obtain sequences from whole-genome phased haplotypes. We used a BWA-Picard-GATK pipeline for mapping sequence reads to the dm6 reference genome assembly, at a median depth-of coverage of 31X, and have made the resulting data publicly-available in the NCBI Short Read Archive (Accession number SRP058502). We used Haplotype Caller to discover and genotype 1,726,931 small genomic variants (SNPs and indels, <200bp). Additionally we detected and genotyped 167 large structural variants (1-100Kb in size) using GenomeStrip/2.0. Sequence and genotype data are publicly-available at the corresponding NCBI databases: Short Read Archive, dbSNP and dbVar (BioProject PRJNA282591). We have also released the unfiltered genotype data, and the code and logs for data processing and summary statistics (https://zenodo.org/communities/sussex_drosophila_sequencing/).


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 215
Author(s):  
Harold B. White ◽  
Stacy Pirro

The genus Magicicada (Hemiptera: Cicadidae) includes the periodical cicadas of Eastern North America. Spending the majority of their long lives underground, the adult cicadas emerge every 13 or 17 years to spend 4-6 weeks as adult to mate. We present the whole genome sequences of two species of 17-year cicadas, Magicicada septendecim and Magicicada septendecula. The reads were assembled by a de novo method followed by alignments to related species. Annotation was performed by GeneMark-ES. The raw and assembled data is available via NCBI Short Read Archive and Assembly databases.


2016 ◽  
Author(s):  
William P. Gilks ◽  
Tanya M. Pennell ◽  
Ilona Flis ◽  
Matthew T. Webster ◽  
Edward H. Morrow

AbstractAs part of a study into the molecular genetics of sexually dimorphic complex traits, we used next-generation sequencing to obtain data on genomic variation in an outbred laboratory-adapted fruit fly (Drosophila melanogaster) population. We successfully resequenced the whole genome of 2 females from the Berkeley reference line (BDGP6/dm6), and 220 hemiclonal females that were heterozygous for the same reference line genome, and a unique haplotype from the outbred base population (LHM). The use of a static and known genetic background enabled us to obtain sequences from whole-genome phased haplotypes. We used a BWA-Picard-GATK pipeline for mapping sequence reads to the dm6 reference genome assembly, at a median depth-of coverage of 31X, and have made the resulting data publicly-available in the NCBI Short Read Archive (BioProject PRJNA282591). Haplotype Caller discovered and genotyped 1,726,931 genetic variants (SNPs and indels, <200bp). Additionally, we used GenomeStrip/2.0 to discover and genotype 167 large structural variants (1-100Kb in size). Sequence data and quality-filtered genotype data are publicly-available at NCBI (Short Read Archive, dbSNP and dbVar). We have also released the unfiltered genotype data, and the code and logs for data processing, summary statistics, and graphs, via the research data repository, Zenodo, (https://zenodo.org/, ’Sussex Drosophila Sequencing’ community).


2019 ◽  
Author(s):  
Alexander H. Wilcox ◽  
Eric Delwart ◽  
Samuel L. Díaz Muñoz

AbstractDouble stranded RNA (dsRNA) is the genetic material of important viruses and a key component of RNA interference-based immunity in eukaryotes. Previous studies have noted difficulties in determining the sequence of dsRNA molecules that have affected studies of immune function and estimates of viral diversity in nature. Dimethyl sulfoxide (DMSO) has been used to denature dsRNA prior to the reverse transcription stage to improve RT-PCR and Sanger sequencing. We systematically tested the utility of DMSO to improve sequencing yield of a dsRNA virus (Φ6) in a short-read next generation sequencing platform. DMSO treatment improved sequencing read recovery by over two orders of magnitude, even when RNA and cDNA concentrations were below the limit of detection. We also tested the effects of DMSO on a mock eukaryotic viral community and found that dsRNA virus reads increased with DMSO treatment. Furthermore, we provide evidence that DMSO treatment does not adversely affect recovery of reads from a single-stranded RNA viral genome (Influenza A/California/07/2009). We suggest that up to 50% DMSO treatment be used prior to cDNA synthesis when samples of interest are composed of or may contain dsRNA.Data SummarySequence data was deposited in the NCBI Short Read Archive (accession numbers: PRJNA527100, PRJNA527101, PRJNA527098). Data and code for analysis is available on GitHub (https://github.com/awilcox83/dsRNA-sequencing/, doi:10.5281/zenodo.1453423). Protocol for dsRNA sequencing is posted on protocols.io (doi:10.17504/protocols.io.ugnetve).


2015 ◽  
Author(s):  
Neeraja M Krishnan ◽  
Prachi Jain ◽  
Saurabh Gupta ◽  
Arun K Hariharan ◽  
Binay Panda

Neem (Azadirachta indica A. Juss.), an evergreen tree of the Meliaceae family, is known for its medicinal, cosmetic, pesticidal and insecticidal properties. We had previously sequenced and published the draft genome of the plant, using mainly short read sequencing data. In this report, we present an improved genome assembly generated using additional short reads from Illumina and long reads from Pacific Biosciences SMRT sequencer. We assembled short reads and error corrected long reads using Platanus, an assembler designed to perform well for heterozygous genomes. The updated genome assembly (v2.0) yielded 3- and 3.5-fold increase in N50 and N75, respectively; 2.6-fold decrease in the total number of scaffolds; 1.25-fold increase in the number of valid transcriptome alignments; 13.4-fold less mis-assembly and 1.85-fold increase in the percentage repeat, over the earlier assembly (v1.0). The current assembly also maps better to the genes known to be involved in the terpenoid biosynthesis pathway. Together, the data represents an improved assembly of the A. indica genome. The raw data described in this manuscript are submitted to the NCBI Short Read Archive under the accession numbers SRX1074131, SRX1074132, SRX1074133, and SRX1074134 (SRP013453).


2021 ◽  
Author(s):  
Tianyi Luo ◽  
Lihuan Zhou ◽  
James Falzon ◽  
Yan Cheng ◽  
Giulia Christianson ◽  
...  

This paper introduces a new method to quantify physical climate risks for power generation projects at the portfolio level. Co-developed by WRI and the European Bank for Reconstruction and Development (EBRD), the approach is designed to be flexible enough to work with portfolios with different levels of data availability, leverage the latest science in climate and hydrology, and use machine-learning techniques such as recurrent neural networks.


Genetics ◽  
1991 ◽  
Vol 128 (2) ◽  
pp. 319-329
Author(s):  
K Maruyama ◽  
D L Hartl

Abstract The distribution of the transposable element mariner was examined in the genus Drosophila. Among the eight species comprising the melanogaster species subgroup, the element is present in D. mauritiana, D. simulans, D. sechellia, D. yakuba and D. teissieri, but it is absent in D. melanogaster, D. erecta and D. orena. Multiple copies of mariner were sequenced from each species in which the element occurs. The inferred phylogeny of the elements and the pattern of divergence were examined in order to evaluate whether horizontal transfer among species or stochastic loss could better account for the discontinuous distribution of the element among the species. The data suggest that the element was present in the ancestral species before the melanogaster subgroup diverged and was lost in the lineage leading to D. melanogaster and the lineage leading to D. erecta and D. orena. This inference is consistent with the finding that mariner also occurs in members of several other species subgroups within the overall melanogaster species group. Within the melanogaster species subgroup, the average divergence of mariner copies between species was lower than the coding region of the alcohol dehydrogenase (Adh) gene. However, the divergence of mariner elements within species was as great as that observed for Adh. We conclude that the relative sequence homogeneity of mariner elements within species is more likely a result of rapid amplification of a few ancestral elements than of concerted evolution. The mariner element may also have had unequal mutation rates in different lineages.


Sign in / Sign up

Export Citation Format

Share Document