scholarly journals A single N1- methyladenosine on the large ribosomal subunit rRNA impacts locally its structure and the translation of key metabolic enzymes

2018 ◽  
Author(s):  
Sunny Sharma ◽  
Johannes David Hartmann ◽  
Peter Watzinger ◽  
Arvid Klepper ◽  
Christian Peifer ◽  
...  

AbstractThe entire chemical modification repertoire of yeast ribosomal RNAs and the enzymes responsible for it have recently been identified. Nonetheless, in most cases the precise roles played by these chemical modifications in ribosome structure, function and regulation remain totally unclear. Previously, we demonstrated that yeast Rrp8 methylates m1A645 of 25S rRNA in yeast. Here, using mung bean nuclease protection assays in combination with quantitative RP-HPLC and primer extension, we report that 25S/28S rRNA of S. pombe, C. albicans and humans also contain a single m1A methylation in the helix 25.1. We characterized nucleomethylin (NML) as a human homolog of yeast Rrp8 and demonstrate that NML catalyzes the m1A1322 methylation of 28S rRNA in humans. Our in vivo structural probing of 25S rRNA, using both DMS and SHAPE, revealed that the loss of the Rrp8-catalyzed m1A modification alters the conformation of domain I of yeast 25S rRNA causing translation initiation defects detectable as halfmers formation, likely because of incompetent loading of 60S on the 43S-preinitiation complex. Quantitative proteomic analysis of the yeast Δrrp8 mutant strain using 2D-DIGE, revealed that loss of m1A645 impacts production of specific set of proteins involved in carbohydrate metabolism, translation and ribosome synthesis. In mouse, NML has been characterized as a metabolic disease-associated gene linked to obesity. Our findings in yeast also point to a role of Rrp8 in primary metabolism. In conclusion, the m1A modification is crucial for maintaining an optimal 60S conformation, which in turn is important for regulating the production of key metabolic enzymes.

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Sunny Sharma ◽  
Johannes David Hartmann ◽  
Peter Watzinger ◽  
Arvid Klepper ◽  
Christian Peifer ◽  
...  

Author(s):  
Anders Liljas ◽  
Suparna Sanyal

Abstract The large ribosomal subunit has a distinct feature, the stalk, extending outside the ribosome. In bacteria it is called the L12 stalk. The base of the stalk is protein uL10 to which two or three dimers of proteins bL12 bind. In archea and eukarya P1 and P2 proteins constitute the stalk. All these extending proteins, that have a high degree of flexibility due to a hinge between their N- and C-terminal parts, are essential for proper functionalization of some of the translation factors. The role of the stalk proteins has remained enigmatic for decades but is gradually approaching an understanding. In this review we summarise the knowhow about the structure and function of the ribosomal stalk till date starting from the early phase of ribosome research.


1995 ◽  
Vol 73 (11-12) ◽  
pp. 789-801 ◽  
Author(s):  
Rob W. van Nues ◽  
Jaap Venema ◽  
Jeanette M. J. Rientjes ◽  
Anita Dirks-Mulder ◽  
Hendrik A. Raué

The 17–18S, 5.8S, and 25–28S rRNA species of eukaryotic cells are produced by a series of nucleolytic reactions that liberate the mature rRNAs from the large primary precursor transcript synthesized by RNA polymerase I. Whereas the order of the cleavage reactions has long been established, until recently little information was available on their molecular details, such as the nature of the proteins, including the nucleolytic enzymes, involved and the signals directing the processing machinery to the correct sites. This situation is now rapidly changing, in particular where yeast is concerned. The use of recently developed systems for in vivo mutational analysis of yeast rDNA has considerably enhanced our knowledge of cis-acting structural features within the pre-rRNA, in particular the transcribed spacer sequences, that are critical for correct and efficient removal of these spacers. The same systems also allow a link to be forged between trans-acting processing factors and these cis-acting elements. In this paper, we will focus predominantly on the nature and role of the cis-acting processing elements as identified in the transcribed spacer regions of Saccharomyces cerevisiae pre-rRNA.Key words: ribosome, processing, precursor rRNA, eukaryote, transcribed spacer.


2014 ◽  
Vol 5 (5) ◽  
pp. 394-407 ◽  
Author(s):  
Zhixiu Yang ◽  
Qiang Guo ◽  
Simon Goto ◽  
Yuling Chen ◽  
Ningning Li ◽  
...  

2002 ◽  
Vol 22 (12) ◽  
pp. 4101-4112 ◽  
Author(s):  
Nenad Tomasevic ◽  
Brenda A. Peculis

ABSTRACT U8 snoRNA plays a unique role in ribosome biogenesis: it is the only snoRNA essential for maturation of the large ribosomal subunit RNAs, 5.8S and 28S. To learn the mechanisms behind the in vivo role of U8 snoRNA, we have purified to near homogeneity and characterized a set of proteins responsible for the formation of a specific U8 RNA-binding complex. This 75-kDa complex is stable in the absence of added RNA and binds U8 with high specificity, requiring the conserved octamer sequence present in all U8 homologues. At least two proteins in this complex can be cross-linked directly to U8 RNA. We have identified the proteins as Xenopus homologues of the LSm (like Sm) proteins, which were previously reported to be involved in cytoplasmic degradation of mRNA and nuclear stabilization of U6 snRNA. We have identified LSm2, -3, -4, -6, -7, and -8 in our purified complex and found that this complex associates with U8 RNA in vivo. This purified complex can bind U6 snRNA in vitro but does not bind U3 or U14 snoRNA in vitro, demonstrating that the LSm complex specifically recognizes U8 RNA.


2000 ◽  
Vol 66 (12) ◽  
pp. 5174-5181 ◽  
Author(s):  
Daniel J. Lightwood ◽  
David J. Ellar ◽  
Paul Jarrett

ABSTRACT Bacillus thuringiensis protein δ-endotoxins are toxic to a variety of different insect species. Larvicidal potency depends on the completion of a number of steps in the mode of action of the toxin. Here, we investigated the role of proteolytic processing in determining the potency of the B. thuringiensis Cry1Ac δ-endotoxin towards Pieris brassicae (family: Pieridae) andMamestra brassicae (family: Noctuidae). In bioassays, Cry1Ac was over 2,000 times more active against P. brassicae than against M. brassicae larvae. Using gut juice purified from both insects, we processed Cry1Ac to soluble forms that had the same N terminus and the same apparent molecular weight. However, extended proteolysis of Cry1Ac in vitro with proteases from both insects resulted in the formation of an insoluble aggregate. With proteases from P. brassicae, the Cry1Ac-susceptible insect, Cry1Ac was processed to an insoluble product with a molecular mass of ∼56 kDa, whereas proteases from M. brassicae, the non-susceptible insect, generated products with molecular masses of ∼58, ∼40, and ∼20 kDa. N-terminal sequencing of the insoluble products revealed that both insects cleaved Cry1Ac within domain I, butM. brassicae proteases also cleaved the toxin at Arg423 in domain II. A similar pattern of processing was observed in vivo. When Arg423 was replaced with Gln or Ser, the resulting mutant toxins resisted degradation by M. brassicae proteases. However, this mutation had little effect on toxicity to M. brassicae. Differential processing of membrane-bound Cry1Ac was also observed in qualitative binding experiments performed with brush border membrane vesicles from the two insects and in midguts isolated from toxin-treated insects.


1998 ◽  
Vol 337 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Michelle KING ◽  
Duy TON ◽  
Kent L. REDMAN

Nop2p is an essential nucleolar protein in Saccharomyces cerevisiae that is involved in large ribosomal subunit assembly. It has substantial homology with human p120, the proliferation-associated nucleolar antigen that is overexpressed in many human cancers. A motif containing an invariant Pro–Cys dipeptide is found in Nop2p, p120 and the bacterial Fmu proteins. A total of nine conserved residues, including Pro423 and Cys424, were individually altered in Nop2p by site-directed mutagenesis. Nop2p function was abolished by conversion of Cys424 into either alanine or serine. All of the other Nop2p mutations tested sustained yeast viability, including glycine replacement of Pro423 and the conversion of a second conserved cysteine into alanine. The crucial role of Cys424 in Nop2p is intriguing, due to the critical roles that cysteine residues adjacent to a proline have in a number of nucleotide-modifying enzymes.


2003 ◽  
Vol 14 (6) ◽  
pp. 2292-2302 ◽  
Author(s):  
Antoni Barrientos ◽  
Daniel Korr ◽  
Karen J. Barwell ◽  
Christian Sjulsen ◽  
Carl D. Gajewski ◽  
...  

The MTG1 gene of Saccharomyces cerevisiae, corresponding to ORF YMR097c on chromosome XIII, codes for a mitochondrial protein essential for respiratory competence. A human homologue of Mtg1p capable of partially rescuing the respiratory deficiency of a yeast mtg1 mutant has also been localized in mitochondria. Mtg1p is a member of a family of GTPases with largely unknown functions. The respiratory deficiency of mtg1 mutants stems from a defect in mitochondrial protein synthesis. Mutations in the 21S rRNA locus are able to suppress the translation defect of mtg1 null mutants. This points to the 21S rRNA or the large ribosomal subunit as the most likely target of Mtg1p action. The presence of mature size 15S and 21S mitochondrial rRNAs in mtg1 mutants excludes Mtg1p from being involved in transcription or processing of these RNAs. More likely, Mtg1p functions in assembly of the large ribosomal subunit. This is consistent with the peripheral localization of Mtg1p on the matrix side of the inner membrane and the results of in vivo mitochondrial translation assays in a temperature-sensitive mtg1 mutant.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaowen Wang ◽  
Hong Zhang ◽  
Russell Sapio ◽  
Jun Yang ◽  
Justin Wong ◽  
...  

AbstractSOD1 is known as the major cytoplasmic superoxide dismutase and an anticancer target. However, the role of SOD1 in cancer is not fully understood. Herein we describe the generation of an inducible Sod1 knockout in KRAS-driven NSCLC mouse model. Sod1 knockout markedly reduces tumor burden in vivo and blocks growth of KRAS mutant NSCLC cells in vitro. Intriguingly, SOD1 is enriched in the nucleus and notably in the nucleolus of NSCLC cells. The nuclear and nucleolar, not cytoplasmic, form of SOD1 is essential for lung cancer cell proliferation. Moreover, SOD1 interacts with PeBoW complex and controls its assembly necessary for pre-60S ribosomal subunit maturation. Mechanistically, SOD1 regulates co-localization of PeBoW with and processing of pre-rRNA, and maturation of cytoplasmic 60S ribosomal subunits in KRAS mutant lung cancer cells. Collectively, our study unravels a nuclear SOD1 function essential for ribosome biogenesis and proliferation in KRAS-driven lung cancer.


Sign in / Sign up

Export Citation Format

Share Document