Processing of eukaryotic pre-rRNA: the role of the transcribed spacers

1995 ◽  
Vol 73 (11-12) ◽  
pp. 789-801 ◽  
Author(s):  
Rob W. van Nues ◽  
Jaap Venema ◽  
Jeanette M. J. Rientjes ◽  
Anita Dirks-Mulder ◽  
Hendrik A. Raué

The 17–18S, 5.8S, and 25–28S rRNA species of eukaryotic cells are produced by a series of nucleolytic reactions that liberate the mature rRNAs from the large primary precursor transcript synthesized by RNA polymerase I. Whereas the order of the cleavage reactions has long been established, until recently little information was available on their molecular details, such as the nature of the proteins, including the nucleolytic enzymes, involved and the signals directing the processing machinery to the correct sites. This situation is now rapidly changing, in particular where yeast is concerned. The use of recently developed systems for in vivo mutational analysis of yeast rDNA has considerably enhanced our knowledge of cis-acting structural features within the pre-rRNA, in particular the transcribed spacer sequences, that are critical for correct and efficient removal of these spacers. The same systems also allow a link to be forged between trans-acting processing factors and these cis-acting elements. In this paper, we will focus predominantly on the nature and role of the cis-acting processing elements as identified in the transcribed spacer regions of Saccharomyces cerevisiae pre-rRNA.Key words: ribosome, processing, precursor rRNA, eukaryote, transcribed spacer.

Author(s):  
Tiziana Schioppa ◽  
Francesca Sozio ◽  
Ilaria Barbazza ◽  
Sara Scutera ◽  
Daniela Bosisio ◽  
...  

CCRL2 is a seven-transmembrane domain receptor that belongs to the chemokine receptor family. At difference from other members of this family, CCRL2 does not promote chemotaxis and shares structural features with atypical chemokine receptors (ACKRs). However, CCRL2 also differs from ACKRs since it does not bind chemokines and is devoid of scavenging functions. The only commonly recognized CCRL2 ligand is chemerin, a non-chemokine chemotactic protein. CCRL2 is expressed both by leukocytes and non-hematopoietic cells. The genetic ablation of CCRL2 has been instrumental to elucidate the role of this receptor as positive or negative regulator of inflammation. CCRL2 modulates leukocyte migration by two main mechanisms. First, when CCRL2 is expressed by barrier cells, such endothelial, and epithelial cells, it acts as a presenting molecule, contributing to the formation of a non-soluble chemotactic gradient for leukocytes expressing CMKLR1, the functional chemerin receptor. This mechanism was shown to be crucial in the induction of NK cell-dependent immune surveillance in lung cancer progression and metastasis. Second, by forming heterocomplexes with other chemokine receptors. For instance, CCRL2/CXCR2 heterodimers were shown to regulate the activation of β2-integrins in mouse neutrophils. This mini-review summarizes the current understanding of CCRL2 biology, based on experimental evidence obtained by the genetic deletion of this receptor in in vivo experimental models. Further studies are required to highlight the complex functional role of CCRL2 in different organs and pathological conditions.


1976 ◽  
Vol 160 (3) ◽  
pp. 495-503 ◽  
Author(s):  
M D Dabeva ◽  
K P Dudov ◽  
A A Hadjiolov ◽  
I Emanuilov ◽  
B N Todorov

The maturation of pre-rRNA (precursor to rRNA)in liver nuclei is studied by agar/ureagel electrophoresis, kinetics of labelling in vivo with [14C] orotate and electron-microscopic observation of secondary structure of RNA molecules. (1) Processing starts from primary pre-rRNA molecules with average mol. wt. 4.6×10(6)(45S) containing the segments of both 28S and 18S rRNA. These molecules form a heterogeneous peak on electrophoresis. The 28S rRNA segment is homogeneous in its secondary structure. However, the large transcribed spacer segment (presumably at the 5′-end) is heterogeneous in size and secondary structure. A minor early labelled RNA component with mol.wt. about 5.8×10(6) is reproducibly found, but its role as a pre-rRNA species remains to be determined. (2) The following intermediate pre-rRNA species are identified: 3.25×10(6) mol.wt.(41S), a precursor common to both mature rRNA species; 2.60×10(6)(36S) and 2.15×10(6)(32S) precursors to 28S rRNA; 1.05×10(6) (21S) precursor to 18S rRNA. The pre-rRNA molecules in rat liver are identical in size and secondary structure with those observed in other mammalian cells. These results suggest that the endonuclease-cleavage sites along the pre-rRNA chain are identical in all mammalian cells. (3) Labelling kinetics and the simultaneous existence of both 36S and 21S pre-rRNA reveal that processing of primary pre-rRNA in adult rat liver occurs simultaneously by at least two major pathways: (i) 45S → 41S → 32S+21S → 28S+18S rRNA and (ii) 45S → 41S → 36S+18S → 32S → 28S rRNA. The two pathways differ by the temporal sequence of endonuclease attack along the 41 S pre-rRNA chain. A minor fraction (mol.wt.2.9×10(6), 39S) is identified as most likely originating by a direct split of 28S rRNA from 45S pre-rRNA. These results show that in liver considerable flexibility exists in the order of cleavage of pre-rRNA molecules during processing.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Eva Torreira ◽  
Jaime Alegrio Louro ◽  
Irene Pazos ◽  
Noelia González-Polo ◽  
David Gil-Carton ◽  
...  

Cell growth requires synthesis of ribosomal RNA by RNA polymerase I (Pol I). Binding of initiation factor Rrn3 activates Pol I, fostering recruitment to ribosomal DNA promoters. This fundamental process must be precisely regulated to satisfy cell needs at any time. We present in vivo evidence that, when growth is arrested by nutrient deprivation, cells induce rapid clearance of Pol I–Rrn3 complexes, followed by the assembly of inactive Pol I homodimers. This dual repressive mechanism reverts upon nutrient addition, thus restoring cell growth. Moreover, Pol I dimers also form after inhibition of either ribosome biogenesis or protein synthesis. Our mutational analysis, based on the electron cryomicroscopy structures of monomeric Pol I alone and in complex with Rrn3, underscores the central role of subunits A43 and A14 in the regulation of differential Pol I complexes assembly and subsequent promoter association.


1989 ◽  
Vol 9 (6) ◽  
pp. 2500-2512 ◽  
Author(s):  
K A Parker ◽  
U Bond

Human rRNA precursor from normal or stressed HeLa cells were studied by S1 nuclease mapping of unlabeled RNA and by antisense RNase mapping of RNA from cells that had been labeled in vivo with [32P]PO4. Heating cells to 43 degrees C decreased the amount of newly synthesized rRNA to less than 5% of the control level and led to greater than 95% inhibition of transcription termination at a region 355 to 362 nucleotides downstream of the 3' end of 28S rRNA, with readthrough continuing into the next transcription unit. Heating of cells to 42 degrees C led to 60% inhibition of termination at this site; 50% of transcripts that extended into the nontranscribed spacer ended in a region 200 to 210 nucleotides upstream of the polymerase I (Pol I) initiation site. This is presumed to be the human upstream transcription termination site because of the absence of RNAs with a 5' end corresponding to this region, the location relative to the Pol I initiation site (which is similar to the location of upstream terminators in other species), and the fact that it is 15 to 25 nucleotides upstream of the sequence GGGTTGACC, which has an 8-of-9 base identity with the sequence 3' of the downstream termination site. Surprisingly, treatment of cells with sodium arsenite, which also leads to the induction of a stress response, did not inhibit termination. Pol I initiation was decreased to the same extent as termination, which lends support to the hypothesis that termination and initiation are coupled. Although termination was almost completely inhibited at 43 degrees C, the majority of the recently synthesized rRNAs were processed to have the correct 3' end of 28S. This finding suggests that 3'-end formation can involve an endonucleolytic cut and is not solely dependent on exonucleolytic trimming of correctly terminated rRNAs.


2001 ◽  
Vol 29 (2) ◽  
pp. 183-187 ◽  
Author(s):  
A. Tissier ◽  
E. G. Frank ◽  
J. P. McDonald ◽  
A. Vaisman ◽  
A. R. Fernàndez deHenestrosa Henestrosa ◽  
...  

The human RAD30B gene has recently been shown to encode a novel DNA polymerase, DNA polymerase i (poli). The role of poli within the cell is presently unknown, and the only clues to its cellular function come from its biochemical characterization in vitro. The aim of this short review is, therefore, to summarize the known enzymic activities of poli and to speculate as to how these biochemical properties might relate to its in vivo function.


2020 ◽  
Author(s):  
Declan A. Gray ◽  
Joshua B. R. White ◽  
Abraham O. Oluwole ◽  
Parthasarathi Rath ◽  
Amy J. Glenwright ◽  
...  

AbstractIn Bacteroidetes, one of the dominant phyla of the mammalian gut, active uptake of large nutrients across the outer membrane is mediated by SusCD protein complexes via a “pedal bin” transport mechanism. However, many features of SusCD function in glycan uptake remain unclear, including ligand binding, the role of the SusD lid and the size limit for substrate transport. Here we characterise the β2,6 fructo-oligosaccharide (FOS) importing SusCD from Bacteroides thetaiotaomicron (Bt1762-Bt1763) to shed light on SusCD function. Co-crystal structures reveal residues involved in glycan recognition and suggest that the large binding cavity can accommodate several substrate molecules, each up to ∼2.5 kDa in size, a finding supported by native mass spectrometry and isothermal titration calorimetry. Mutational studies in vivo provide functional insights into the key structural features of the SusCD apparatus and cryo-EM of the intact dimeric SusCD complex reveals several distinct states of the transporter, directly visualising the dynamics of the pedal bin transport mechanism.


2018 ◽  
Author(s):  
Sunny Sharma ◽  
Johannes David Hartmann ◽  
Peter Watzinger ◽  
Arvid Klepper ◽  
Christian Peifer ◽  
...  

AbstractThe entire chemical modification repertoire of yeast ribosomal RNAs and the enzymes responsible for it have recently been identified. Nonetheless, in most cases the precise roles played by these chemical modifications in ribosome structure, function and regulation remain totally unclear. Previously, we demonstrated that yeast Rrp8 methylates m1A645 of 25S rRNA in yeast. Here, using mung bean nuclease protection assays in combination with quantitative RP-HPLC and primer extension, we report that 25S/28S rRNA of S. pombe, C. albicans and humans also contain a single m1A methylation in the helix 25.1. We characterized nucleomethylin (NML) as a human homolog of yeast Rrp8 and demonstrate that NML catalyzes the m1A1322 methylation of 28S rRNA in humans. Our in vivo structural probing of 25S rRNA, using both DMS and SHAPE, revealed that the loss of the Rrp8-catalyzed m1A modification alters the conformation of domain I of yeast 25S rRNA causing translation initiation defects detectable as halfmers formation, likely because of incompetent loading of 60S on the 43S-preinitiation complex. Quantitative proteomic analysis of the yeast Δrrp8 mutant strain using 2D-DIGE, revealed that loss of m1A645 impacts production of specific set of proteins involved in carbohydrate metabolism, translation and ribosome synthesis. In mouse, NML has been characterized as a metabolic disease-associated gene linked to obesity. Our findings in yeast also point to a role of Rrp8 in primary metabolism. In conclusion, the m1A modification is crucial for maintaining an optimal 60S conformation, which in turn is important for regulating the production of key metabolic enzymes.


2021 ◽  
Author(s):  
Janik Kranz ◽  
Sebastian L. Wenski ◽  
Alexnder A. Dichter ◽  
Helge B. Bode ◽  
Kenan A. J. Bozhueyuek

Many clinically used natural products are produced by non-ribosomal peptide synthetases (NRPSs), which due to their modular nature should be accessible to modification and engineering approaches. While the adenylation domain (A) plays the key role in substrate recognition and activation, the condensation domain (C) which is responsible for substrate linkage and stereochemical filtering recently became the subject of debate - with its attributed role as a "gatekeeper" being called into question. Since we have thoroughly investigated different combinations of C-A didomains in a series of in vitro, in vivo, and in situ experiments suggesting an important role to the C-A interface for the activity and specificity of the downstream A domain and not the C domain as such, we would like to contribute to this discussion. The role of the C-A interface, termed 'extended gatekeeping', due to structural features of the C domains, can also be transferred to other NRPSs by engineering, was finally investigated and characterised in an in silico approach on 30 wild-type and recombinant C-A interfaces. With these data, we not only would like to offer a new perspective on the specificity of C domains, but also to revise our previously established NRPS engineering and construction rules.


2020 ◽  
Author(s):  
Gregor Urban ◽  
Mirko Torrisi ◽  
Christophe N. Magnan ◽  
Gianluca Pollastri ◽  
Pierre Baldi

AbstractThe use of evolutionary profiles to predict protein secondary structure, as well as other protein structural features, has been standard practice since the 1990s. Using profiles in the input of such predictors, in place or in addition to the sequence itself, leads to significantly more accurate predictors. While profiles can enhance structural signals, their role remains somewhat surprising as proteins do not use profiles when folding in vivo. Furthermore, the same sequence-based redundancy reduction protocols initially derived to train and evaluate sequence-based predictors, have been applied to train and evaluate profile-based predictors. This can lead to unfair comparisons since profile may facilitate the bleeding of information between training and test sets. Here we use the extensively studied problem of secondary structure prediction to better evaluate the role of profiles and show that: (1) high levels of profile similarity between training and test proteins are observed when using standard sequence-based redundancy protocols; (2) the gain in accuracy for profile-based predictors, over sequence-based predictors, strongly relies on these high levels of profile similarity between training and test proteins; and (3) the overall accuracy of a profile-based predictor on a given protein dataset provides a biased measure when trying to estimate the actual accuracy of the predictor, or when comparing it to other predictors. We show, however, that this bias can be avoided by implementing a new protocol (EVALpro) which evaluates the accuracy of profile-based predictors as a function of the profile similarity between training and test proteins. Such a protocol not only allows for a fair comparison of the predictors on equally hard or easy examples, but also completely removes the need for selecting arbitrary similarity cutoffs when selecting test proteins. The EVALpro program is available for download from the SCRATCH suite (http://scratch.proteomics.ics.uci.edu).


1989 ◽  
Vol 9 (6) ◽  
pp. 2500-2512
Author(s):  
K A Parker ◽  
U Bond

Human rRNA precursor from normal or stressed HeLa cells were studied by S1 nuclease mapping of unlabeled RNA and by antisense RNase mapping of RNA from cells that had been labeled in vivo with [32P]PO4. Heating cells to 43 degrees C decreased the amount of newly synthesized rRNA to less than 5% of the control level and led to greater than 95% inhibition of transcription termination at a region 355 to 362 nucleotides downstream of the 3' end of 28S rRNA, with readthrough continuing into the next transcription unit. Heating of cells to 42 degrees C led to 60% inhibition of termination at this site; 50% of transcripts that extended into the nontranscribed spacer ended in a region 200 to 210 nucleotides upstream of the polymerase I (Pol I) initiation site. This is presumed to be the human upstream transcription termination site because of the absence of RNAs with a 5' end corresponding to this region, the location relative to the Pol I initiation site (which is similar to the location of upstream terminators in other species), and the fact that it is 15 to 25 nucleotides upstream of the sequence GGGTTGACC, which has an 8-of-9 base identity with the sequence 3' of the downstream termination site. Surprisingly, treatment of cells with sodium arsenite, which also leads to the induction of a stress response, did not inhibit termination. Pol I initiation was decreased to the same extent as termination, which lends support to the hypothesis that termination and initiation are coupled. Although termination was almost completely inhibited at 43 degrees C, the majority of the recently synthesized rRNAs were processed to have the correct 3' end of 28S. This finding suggests that 3'-end formation can involve an endonucleolytic cut and is not solely dependent on exonucleolytic trimming of correctly terminated rRNAs.


Sign in / Sign up

Export Citation Format

Share Document