scholarly journals Highly differentiated CD4 T cells Unequivocally Identify Primary Resistance and Risk of Hyperprogression to PD-L1/PD-1 Immune Checkpoint Blockade in Lung Cancer

2018 ◽  
Author(s):  
Miren Zuazo-Ibarra ◽  
Hugo Arasanz ◽  
Gonzalo Fernández-Hinojal ◽  
Gato-Cañas María ◽  
Berta Hernández-Marín ◽  
...  

AbstractThe majority of lung cancer patients are refractory to PD-L1/PD-1 blockade monotherapy. This therapy may even accelerate progression and death in a group of patients called hyperprogressors. Here we demonstrate that the efficacy of PD-L1/PD-1 blockade therapy relies on baseline circulating highly-differentiated CD28− CD27− CD4 T cells (THD cells), which segregate patients in two non-overlapping groups. THD cells in cancer patients mostly comprised of central memory subsets that potently co-upregulated PD-1 and LAG3 upon antigen recognition. Low baseline THD numbers unequivocally identified intrinsic non-responders and hyperprogressors, whom aberrantly responded to therapy with a potent systemic proliferative THD cell burst. Responder patients showed significant reductions in systemic CD4 THD cells throughout therapy linked to expansion of the CD28+ CD27+ CD4 T cell compartment. Quantification of THD cells from peripheral blood samples prior to therapy allows identification of non-responders, hyperprogressors and responders, a critical issue in clinical oncology. These results place CD4 T cell responses at the center of anti-tumor immunity.

2002 ◽  
Vol 168 (9) ◽  
pp. 4272-4276 ◽  
Author(s):  
Edward Y. Woo ◽  
Heidi Yeh ◽  
Christina S. Chu ◽  
Katia Schlienger ◽  
Richard G. Carroll ◽  
...  

2018 ◽  
Vol 36 (15_suppl) ◽  
pp. e24091-e24091
Author(s):  
EleniKyriaki Vetsika ◽  
Despoina Aggouraki ◽  
Zacharoula Lyristi ◽  
Aristeidis Koukos ◽  
Despoina Kourougkiaouri ◽  
...  

2019 ◽  
Vol 7 (6) ◽  
pp. 910-922 ◽  
Author(s):  
Joshua R. Veatch ◽  
Brenda L. Jesernig ◽  
Julia Kargl ◽  
Matthew Fitzgibbon ◽  
Sylvia M. Lee ◽  
...  

2021 ◽  
Author(s):  
Ioannis Morianos ◽  
Aikaterini Tsitsopoulou ◽  
Konstantinos Potaris ◽  
Dimitrios Valakos ◽  
Ourania Fari ◽  
...  

Abstract Background: Although tumor-infiltrating T cells represent a favorable prognostic marker for cancer patients, the majority of these cells are rendered with an exhausted phenotype. Hence, there is an unmet need to identify factors which can reverse this dysfunctional profile and restore their anti-tumorigenic potential. Activin-A is a pleiotropic cytokine, exerting a broad range of pro- or anti-inflammatory functions in different disease contexts, including allergic and autoimmune disorders and cancer. Given that activin-A exhibits a profound effect on CD4+ T cells in the airways and is elevated in lung cancer patients, we hypothesized that activin-A can effectively regulate anti-tumor immunity in lung cancer.Methods: To evaluate the effects of activin-A in the context of lung cancer, we utilized the OVA-expressing Lewis Lung Carcinoma mouse model as well as the B16F10 melanoma model of pulmonary metastases. The therapeutic potential of activin-A-treated lung tumor-infiltrating CD4+ T cells was evaluated in adoptive transfer experiments, using CD4-/--tumor bearing mice as recipients. In a reverse approach, we disrupted activin-A signaling on CD4+ T cells using an inducible model of CD4+ T cell-specific knockout of activin-A type I receptor. RNA-Sequencing analysis was performed to assess the transcriptional signature of these cells and the molecular mechanisms which mediate activin-A’s function. In a translational approach, we validated activin-A’s anti-tumorigenic properties using primary human tumor-infiltrating CD4+ T cells from lung cancer patients.Results: Administration of activin-A in lung tumor-bearing mice attenuated disease progression, an effect associated with heightened ratio of infiltrating effector to regulatory CD4+ T cells. Therapeutic transfer of lung tumor-infiltrating activin-A-treated CD4+ T cells, delayed tumor progression in CD4-/- recipients and enhanced T cell-mediated immunity. CD4+ T cells genetically unresponsive to activin-A, failed to elicit effective anti-tumor properties and displayed an exhausted molecular signature governed by the transcription factors Tox and Tox2. Of translational importance, treatment of activin-A on tumor-infiltrating CD4+ T cells from lung cancer patients augmented their immunostimulatory capacity towards autologous CD4+ and CD8+ T cells.Conclusions: In this study, we introduce activin-A as a novel immunomodulatory factor in the lung tumor microenvironment, which bestows exhausted CD4+ T cells with effector properties.


2008 ◽  
Vol 57 (10) ◽  
pp. 1493-1504 ◽  
Author(s):  
Minu K. Srivastava ◽  
Jacobus J. Bosch ◽  
James A. Thompson ◽  
Bruce R. Ksander ◽  
Martin J. Edelman ◽  
...  

2006 ◽  
Vol 176 (8) ◽  
pp. 5093-5099 ◽  
Author(s):  
Mariacristina Crosti ◽  
Renato Longhi ◽  
Giuseppe Consogno ◽  
Giulio Melloni ◽  
Piero Zannini ◽  
...  

Author(s):  
Ioannis Morianos ◽  
Aikaterini Tsitsopoulou ◽  
Konstantinos Potaris ◽  
Dimitrios Valakos ◽  
Ourania Fari ◽  
...  

Abstract Background Although tumor-infiltrating T cells represent a favorable prognostic marker for cancer patients, the majority of these cells are rendered with an exhausted phenotype. Hence, there is an unmet need to identify factors which can reverse this dysfunctional profile and restore their anti-tumorigenic potential. Activin-A is a pleiotropic cytokine, exerting a broad range of pro- or anti-inflammatory functions in different disease contexts, including allergic and autoimmune disorders and cancer. Given that activin-A exhibits a profound effect on CD4+ T cells in the airways and is elevated in lung cancer patients, we hypothesized that activin-A can effectively regulate anti-tumor immunity in lung cancer. Methods To evaluate the effects of activin-A in the context of lung cancer, we utilized the OVA-expressing Lewis Lung Carcinoma mouse model as well as the B16F10 melanoma model of pulmonary metastases. The therapeutic potential of activin-A-treated lung tumor-infiltrating CD4+ T cells was evaluated in adoptive transfer experiments, using CD4−/−-tumor bearing mice as recipients. In a reverse approach, we disrupted activin-A signaling on CD4+ T cells using an inducible model of CD4+ T cell-specific knockout of activin-A type I receptor. RNA-Sequencing analysis was performed to assess the transcriptional signature of these cells and the molecular mechanisms which mediate activin-A’s function. In a translational approach, we validated activin-A’s anti-tumorigenic properties using primary human tumor-infiltrating CD4+ T cells from lung cancer patients. Results Administration of activin-A in lung tumor-bearing mice attenuated disease progression, an effect associated with heightened ratio of infiltrating effector to regulatory CD4+ T cells. Therapeutic transfer of lung tumor-infiltrating activin-A-treated CD4+ T cells, delayed tumor progression in CD4−/− recipients and enhanced T cell-mediated immunity. CD4+ T cells genetically unresponsive to activin-A, failed to elicit effective anti-tumor properties and displayed an exhausted molecular signature governed by the transcription factors Tox and Tox2. Of translational importance, treatment of activin-A on tumor-infiltrating CD4+ T cells from lung cancer patients augmented their immunostimulatory capacity towards autologous CD4+ and CD8+ T cells. Conclusions In this study, we introduce activin-A as a novel immunomodulatory factor in the lung tumor microenvironment, which bestows exhausted CD4+ T cells with effector properties.


2004 ◽  
Vol 172 (5) ◽  
pp. 3289-3296 ◽  
Author(s):  
Djordje Atanackovic ◽  
Nasser K. Altorki ◽  
Elisabeth Stockert ◽  
Barbara Williamson ◽  
Achim A. Jungbluth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document