scholarly journals RCD1 Coordinates Chloroplastic and Mitochondrial Electron Transfer through Interaction with ANAC Transcription Factors in Arabidopsis

2018 ◽  
Author(s):  
Alexey Shapiguzov ◽  
Julia P. Vainonen ◽  
Kerri Hunter ◽  
Helena Tossavainen ◽  
Arjun Tiwari ◽  
...  

AbstractSignaling from chloroplasts and mitochondria, both dependent on reactive oxygen species (ROS), merge at the nuclear protein RADICAL-INDUCED CELL DEATH1 (RCD1). ROS produced in the chloroplasts affect the abundance, thiol redox state and oligomerization of RCD1. RCD1 directly interacts in vivo with ANAC013 and ANAC017 transcription factors, which are the mediators of the ROS-related mitochondrial complex III retrograde signa and suppresses activity of ANAC013 and ANAC017. Inactivation of RCD1 leads to increased expression of ANAC013 and ANAC017-regulated genes belonging to the mitochondrial dysfunction stimulon (MDS), including genes for mitochondrial alternative oxidases (AOXs). Accumulating AOXs and other MDS gene products alter electron transfer pathways in the chloroplasts, leading to diminished production of chloroplastic ROS and increased protection of photosynthetic apparatus from ROS damage. RCD1-dependent regulation affects chloroplastic and mitochondrial retrograde signaling including chloroplast signaling by 3’-phosphoadenosine 5’-phosphate (PAP). Sensitivity of RCD1 to organellar ROS provides feedback control of nuclear gene expression.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Alexey Shapiguzov ◽  
Julia P Vainonen ◽  
Kerri Hunter ◽  
Helena Tossavainen ◽  
Arjun Tiwari ◽  
...  

Reactive oxygen species (ROS)-dependent signaling pathways from chloroplasts and mitochondria merge at the nuclear protein RADICAL-INDUCED CELL DEATH1 (RCD1). RCD1 interacts in vivo and suppresses the activity of the transcription factors ANAC013 and ANAC017, which mediate a ROS-related retrograde signal originating from mitochondrial complex III. Inactivation of RCD1 leads to increased expression of mitochondrial dysfunction stimulon (MDS) genes regulated by ANAC013 and ANAC017. Accumulating MDS gene products, including alternative oxidases (AOXs), affect redox status of the chloroplasts, leading to changes in chloroplast ROS processing and increased protection of photosynthetic apparatus. ROS alter the abundance, thiol redox state and oligomerization of the RCD1 protein in vivo, providing feedback control on its function. RCD1-dependent regulation is linked to chloroplast signaling by 3'-phosphoadenosine 5'-phosphate (PAP). Thus, RCD1 integrates organellar signaling from chloroplasts and mitochondria to establish transcriptional control over the metabolic processes in both organelles.


2011 ◽  
Vol 66 (1-2) ◽  
pp. 47-54 ◽  
Author(s):  
Jian Cheng ◽  
Chun-Xia He ◽  
Zhong-Wei Zhang ◽  
Fei Xu ◽  
Da-Wei Zhang ◽  
...  

Plastid-to-nucleus retrograde signalling coordinates nuclear gene expression with chloroplast function and is essential for the photoautotrophic life-style of plants. The relationship between plastid signalling and water stress response was investigated with genome uncoupled (gun) mutants, gun1, gun3, and gun5, and an abscisic acid (ABA)-responsible transcription factor mutant, abi4. The results showed that gun1, gun3, gun5, and abi4 mutants suffered from more oxidative damages than the wild-type plants under the water stress and the water stress + herbicide (norflurazon, NF) co-treatment. Superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) activities could not be prompted in the plastidsignalling defective mutants under the stress conditions. At the same time, Lhcb expression was not repressed in the plastid-signalling defective mutants by the NF treatment or water stress. Therefore, the photosynthetic apparatus in the mutant cells could not be closed during the stresses and the excessive light caused more photodamages on the mutant leaves. The roles of GUN1, GUN3, GUN5 and ABI4 proteins in environmental stress adaptation have been discussed.


2019 ◽  
Author(s):  
Piotr Gawroński ◽  
Paweł Burdiak ◽  
Lars B. Scharff ◽  
Jakub Mielecki ◽  
Magdalena Zaborowska ◽  
...  

SummaryChloroplast to nucleus retrograde signaling is essential for cell function, acclimation to fluctuating environmental conditions, plant growth and development. The vast majority of chloroplast proteins are nuclear-encoded and must be imported into the organelle after synthesis in the cytoplasm. This import is essential for the development of fully functional chloroplasts. On the other hand, functional chloroplasts act as sensors of environmental changes and can trigger acclimatory responses that influence nuclear gene expression. Signaling via mobile transcription factors (TFs) has been recently recognized as a way of communication between organelles and the nucleus. In this study, we performed a targeted reverse genetic screen to identify novel dual-localized TFs involved in chloroplast retrograde signaling during stress responses. We found that CHLOROPLAST IMPORT APPARATUS 2 (CIA2), a TF with putative plastid transit peptide can be detected in chloroplasts and the nucleus. Further, we found that CIA2, along with its homolog CIA2-like (CIL) act in an unequally redundant manner and are involved in the regulation of Arabidopsis responses to UV-AB, high light, and heat shock. Finally, our results suggest that both CIA2 and CIL are crucial for chloroplast translation. Our results contribute to a deeper understanding of signaling events in the chloroplast-nucleus cross-talk.SignificanceWe found that a transcription factor CIA2 can be located in chloroplasts and nucleus. CIA2 and is close homolog CIL are involved in protein translation and abiotic stress responses, and we suggest that they play an essential role in retrograde signaling between these organelles.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 297
Author(s):  
Zhi-Yong Yang ◽  
Min Ye ◽  
Ya-Xin Xing ◽  
Qi-Gui Xie ◽  
Jian-Hong Zhou ◽  
...  

To address which mitochondria-related nuclear differentially expressed genes (DEGs) and related pathways are altered during human oocyte maturation, single-cell analysis was performed in three oocyte states: in vivo matured (M-IVO), in vitro matured (M-IVT), and failed to mature in vitro (IM-IVT). There were 691 DEGs and 16 mitochondria-related DEGs in the comparison of M-IVT vs. IM-IVT oocytes, and 2281 DEGs and 160 mitochondria-related DEGs in the comparison of M-IVT vs. M-IVO oocytes, respectively. The GO and KEGG analyses showed that most of them were involved in pathways such as oxidative phosphorylation, pyruvate metabolism, peroxisome, and amino acid metabolism, i.e., valine, leucine, isoleucine, glycine, serine, and threonine metabolism or degradation. During the progress of oocyte maturation, the metabolic pathway, which derives the main source of ATP, shifted from glucose metabolism to pyruvate and fatty acid oxidation in order to maintain a low level of damaging reactive oxygen species (ROS) production. Although the immature oocytes could be cultured to a mature stage by an in vitro technique (IVM), there were still some differences in mitochondria-related regulations, which showed that the mitochondria were regulated by nuclear genes to compensate for their developmental needs. Meanwhile, the results indicated that the current IVM culture medium should be optimized to compensate for the special need for further development according to this disclosure, as it was a latent strategy to improve the effectiveness of the IVM procedure.


2002 ◽  
Vol 157 (7) ◽  
pp. 1151-1160 ◽  
Author(s):  
Osamu Hori ◽  
Fusae Ichinoda ◽  
Takashi Tamatani ◽  
Atsushi Yamaguchi ◽  
Naoya Sato ◽  
...  

The rat homologue of a mitochondrial ATP-dependent protease Lon was cloned from cultured astrocytes exposed to hypoxia. Expression of Lon was enhanced in vitro by hypoxia or ER stress, and in vivo by brain ischemia. These observations suggested that changes in nuclear gene expression (Lon) triggered by ER stress had the potential to impact important mitochondrial processes such as assembly and/or degradation of cytochrome c oxidase (COX). In fact, steady-state levels of nuclear-encoded COX IV and V were reduced, and mitochondrial-encoded subunit II was rapidly degraded under ER stress. Treatment of cells with cycloheximide caused a similar imbalance in the accumulation of COX subunits, and enhanced mRNA for Lon and Yme1, the latter another mitochondrial ATP-dependent protease. Furthermore, induction of Lon or GRP75/mtHSP70 by ER stress was inhibited in PERK (−/−) cells. Transfection studies revealed that overexpression of wild-type or proteolytically inactive Lon promoted assembly of COX II into a COX I–containing complex, and partially prevented mitochondrial dysfunction caused by brefeldin A or hypoxia. These observations demonstrated that suppression of protein synthesis due to ER stress has a complex effect on the synthesis of mitochondrial-associated proteins, both COX subunits and ATP-dependent proteases and/or chaperones contributing to assembly of the COX complex.


2019 ◽  
Author(s):  
Takayuki Shimizu ◽  
Nobuyoshi Mochizuki ◽  
Akira Nagatani ◽  
Satoru Watanabe ◽  
Tomohiro Shimada ◽  
...  

The biogenesis of the photosynthetic apparatus in developing chloroplasts requires the assembly of proteins encoded on both nuclear and chloroplast genomes1. To co-ordinate this process there needs to be communication between these organelles, and while we have a good understanding of how the nucleus controls chloroplast development, how the chloroplast communicates with the nucleus at this time is still essentially unknown2. What we do know comes from pioneering work in which a series of genomes uncoupled (gun) mutants were identified that show elevated nuclear gene expression after chloroplast damage3. Of the six reported gun mutations, five are in tetrapyrrole biosynthesis proteins4-6 and this has led to the development of a model for chloroplast-to-nucleus retrograde signaling in which ferrochelatase 1 (FC1)-dependent heme synthesis generates a positive signal promoting expression of photosynthesis-related genes6. However, the molecular consequences of the strongest of the gun mutants, gun17, is unknown, preventing the development of a unifying hypothesis for chloroplast-to-nucleus signaling. Here, we show that GUN1 directly binds to heme and other metal-porphyrins, affects flux through the tetrapyrrole biosynthesis pathway and can increase the chelatase activity of FC1. These results raise the possibility that the signaling role of GUN1 may be manifested through changes in tetrapyrrole metabolism and supports a role for tetrapyrroles as mediators of a single biogenic chloroplast-to-nucleus retrograde signaling pathway.


2019 ◽  
Vol 26 (3) ◽  
pp. 449-461.e8 ◽  
Author(s):  
Lee M. Booty ◽  
Justyna M. Gawel ◽  
Filip Cvetko ◽  
Stuart T. Caldwell ◽  
Andrew R. Hall ◽  
...  

2019 ◽  
Vol 116 (49) ◽  
pp. 24900-24906 ◽  
Author(s):  
Takayuki Shimizu ◽  
Sylwia M. Kacprzak ◽  
Nobuyoshi Mochizuki ◽  
Akira Nagatani ◽  
Satoru Watanabe ◽  
...  

The biogenesis of the photosynthetic apparatus in developing seedlings requires the assembly of proteins encoded on both nuclear and chloroplast genomes. To coordinate this process there needs to be communication between these organelles, but the retrograde signals by which the chloroplast communicates with the nucleus at this time are still essentially unknown. The Arabidopsis thaliana genomes uncoupled (gun) mutants, that show elevated nuclear gene expression after chloroplast damage, have formed the basis of our understanding of retrograde signaling. Of the 6 reported gun mutations, 5 are in tetrapyrrole biosynthesis proteins and this has led to the development of a model for chloroplast-to-nucleus retrograde signaling in which ferrochelatase 1 (FC1)-dependent heme synthesis generates a positive signal promoting expression of photosynthesis-related genes. However, the molecular consequences of the strongest of the gun mutants, gun1, are poorly understood, preventing the development of a unifying hypothesis for chloroplast-to-nucleus signaling. Here, we show that GUN1 directly binds to heme and other porphyrins, reduces flux through the tetrapyrrole biosynthesis pathway to limit heme and protochlorophyllide synthesis, and can increase the chelatase activity of FC1. These results raise the possibility that the signaling role of GUN1 may be manifested through changes in tetrapyrrole metabolism, supporting a role for tetrapyrroles as mediators of a single biogenic chloroplast-to-nucleus retrograde signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document