scholarly journals Luigi: Large-scale histopathological image retrieval system using deep texture representations

2018 ◽  
Author(s):  
Daisuke Komura ◽  
Keisuke Fukuta ◽  
Ken Tominaga ◽  
Akihiro Kawabe ◽  
Hirotomo Koda ◽  
...  

AbstractBackgroundAs a large number of digital histopathological images have been accumulated, there is a growing demand of content-based image retrieval (CBIR) in pathology for educational, diagnostic, or research purposes. However, no CBIR systems in digital pathology are publicly available.ResultsWe developed a web application, the Luigi system, which retrieves similar histopathological images from various cancer cases. Using deep texture representations computed with a pre-trained convolutional neural network as an image feature in conjunction with an approximate nearest neighbor search method, the Luigi system provides fast and accurate results for any type of tissue or cell without the need for further training. In addition, users can easily submit query images of an appropriate scale into the Luigi system and view the retrieved results using our smartphone application. The cases stored in the Luigi database are obtained from The Cancer Genome Atlas with rich clinical, pathological, and molecular information. We tested the Luigi system by querying typical cancerous regions from four cancer types, and confirmed successful retrieval of relevant images.ConclusionsThe Luigi system will help students, pathologists, and researchers easily retrieve histopathological images of various cancers similar to those of the query image.

Content-Based Image Retrieval (CBIR) is extensively used technique for image retrieval from large image databases. However, users are not satisfied with the conventional image retrieval techniques. In addition, the advent of web development and transmission networks, the number of images available to users continues to increase. Therefore, a permanent and considerable digital image production in many areas takes place. Quick access to the similar images of a given query image from this extensive collection of images pose great challenges and require proficient techniques. From query by image to retrieval of relevant images, CBIR has key phases such as feature extraction, similarity measurement, and retrieval of relevant images. However, extracting the features of the images is one of the important steps. Recently Convolutional Neural Network (CNN) shows good results in the field of computer vision due to the ability of feature extraction from the images. Alex Net is a classical Deep CNN for image feature extraction. We have modified the Alex Net Architecture with a few changes and proposed a novel framework to improve its ability for feature extraction and for similarity measurement. The proposal approach optimizes Alex Net in the aspect of pooling layer. In particular, average pooling is replaced by max-avg pooling and the non-linear activation function Maxout is used after every Convolution layer for better feature extraction. This paper introduces CNN for features extraction from images in CBIR system and also presents Euclidean distance along with the Comprehensive Values for better results. The proposed framework goes beyond image retrieval, including the large-scale database. The performance of the proposed work is evaluated using precision. The proposed work show better results than existing works.


Information ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 190
Author(s):  
Xinpan Yuan ◽  
Qunfeng Liu ◽  
Jun Long ◽  
Lei Hu ◽  
Songlin Wang

Image retrieval or content-based image retrieval (CBIR) can be transformed into the calculation of the distance between image feature vectors. The closer the vectors are, the higher the image similarity will be. In the image retrieval system for large-scale dataset, the approximate nearest-neighbor (ANN) search can quickly obtain the top k images closest to the query image, which is the Top-k problem in the field of information retrieval. With the traditional ANN algorithms, such as KD-Tree, R-Tree, and M-Tree, when the dimension of the image feature vector increases, the computing time will increase exponentially due to the curse of dimensionality. In order to reduce the calculation time and improve the efficiency of image retrieval, we propose an ANN search algorithm based on the Product Quantization Table (PQTable). After quantizing and compressing the image feature vectors by the product quantization algorithm, we can construct the image index structure of the PQTable, which speeds up image retrieval. We also propose a multi-PQTable query strategy for ANN search. Besides, we generate several nearest-neighbor vectors for each sub-compressed vector of the query vector to reduce the failure rate and improve the recall in image retrieval. Through theoretical analysis and experimental verification, it is proved that the multi-PQTable query strategy and the generation of several nearest-neighbor vectors are greatly correct and efficient.


Author(s):  
Junjie Chen ◽  
William K. Cheung ◽  
Anran Wang

Hashing is an efficient approximate nearest neighbor search method and has been widely adopted for large-scale multimedia retrieval. While supervised learning is more popular for the data-dependent hashing, deep unsupervised hashing methods have recently been developed to learn non-linear transformations for converting multimedia inputs to binary codes. Most of existing deep unsupervised hashing methods make use of a quadratic constraint for minimizing the difference between the compact representations and the target binary codes, which inevitably causes severe information loss. In this paper, we propose a novel deep unsupervised method called DeepQuan for hashing. The DeepQuan model utilizes a deep autoencoder network, where the encoder is used to learn compact representations and the decoder is for manifold preservation. To contrast with the existing unsupervised methods, DeepQuan learns the binary codes by minimizing the quantization error through product quantization technique. Furthermore, a weighted triplet loss is proposed to avoid trivial solution and poor generalization. Extensive experimental results on standard datasets show that the proposed DeepQuan model outperforms the state-of-the-art unsupervised hashing methods for image retrieval tasks.


2021 ◽  
Vol 13 (23) ◽  
pp. 4786
Author(s):  
Zhen Wang ◽  
Nannan Wu ◽  
Xiaohan Yang ◽  
Bingqi Yan ◽  
Pingping Liu

As satellite observation technology rapidly develops, the number of remote sensing (RS) images dramatically increases, and this leads RS image retrieval tasks to be more challenging in terms of speed and accuracy. Recently, an increasing number of researchers have turned their attention to this issue, as well as hashing algorithms, which map real-valued data onto a low-dimensional Hamming space and have been widely utilized to respond quickly to large-scale RS image search tasks. However, most existing hashing algorithms only emphasize preserving point-wise or pair-wise similarity, which may lead to an inferior approximate nearest neighbor (ANN) search result. To fix this problem, we propose a novel triplet ordinal cross entropy hashing (TOCEH). In TOCEH, to enhance the ability of preserving the ranking orders in different spaces, we establish a tensor graph representing the Euclidean triplet ordinal relationship among RS images and minimize the cross entropy between the probability distribution of the established Euclidean similarity graph and that of the Hamming triplet ordinal relation with the given binary code. During the training process, to avoid the non-deterministic polynomial (NP) hard problem, we utilize a continuous function instead of the discrete encoding process. Furthermore, we design a quantization objective function based on the principle of preserving triplet ordinal relation to minimize the loss caused by the continuous relaxation procedure. The comparative RS image retrieval experiments are conducted on three publicly available datasets, including UC Merced Land Use Dataset (UCMD), SAT-4 and SAT-6. The experimental results show that the proposed TOCEH algorithm outperforms many existing hashing algorithms in RS image retrieval tasks.


Author(s):  
A. Murat Yagci ◽  
Tevfik Aytekin ◽  
Fikret S. Gurgen

Matrix factorization models often reveal the low-dimensional latent structure in high-dimensional spaces while bringing space efficiency to large-scale collaborative filtering problems. Improving training and prediction time efficiencies of these models are also important since an accurate model may raise practical concerns if it is slow to capture the changing dynamics of the system. For the training task, powerful improvements have been proposed especially using SGD, ALS, and their parallel versions. In this paper, we focus on the prediction task and combine matrix factorization with approximate nearest neighbor search methods to improve the efficiency of top-N prediction queries. Our efforts result in a meta-algorithm, MMFNN, which can employ various common matrix factorization models, drastically improve their prediction efficiency, and still perform comparably to standard prediction approaches or sometimes even better in terms of predictive power. Using various batch, online, and incremental matrix factorization models, we present detailed empirical analysis results on many large implicit feedback datasets from different application domains.


Author(s):  
Jun Yi Li ◽  
Jian Hua Li

As we know, the nearest neighbor search is a good and effective method for good-sized image search. This paper mainly introduced how to learn an outstanding image feature representation form and a series of compact binary Hash coding functions under deep learning framework. Our concept is that binary codes can be obtained using a hidden layer to present some latent concepts dominating the class labels with usable data labels. Our method is effective in obtaining hash codes and image representations, so it is suitable for good-sized dataset. It is demonstrated in our experiment that the performances of the proposed algorithms were then verified on three different databases, MNIST, CIFAR-10 and Caltech-101. The experimental results reveal that two-proposed image Hash retrieval algorithm based on pixel-level automatic feature learning show higher search accuracy than the other algorithms; moreover, these two algorithms were proved to be more favorable in scalability and generality.


2014 ◽  
Vol 596 ◽  
pp. 388-393
Author(s):  
Guan Huang

This paper introduces a model for content based image retrieval. The proposed model extracts image color, texture and shape as feature vectors; and then the image feature space is divided into a group of search zones; during the image searching phase, the fractional order distance is utilized to evaluate the similarity between images. As the query image vector only needs to compare with library image vectors located in the same search zone, the time cost is largely reduced. Further more the fractional order distance is utilized to improve the vector matching accuracy. The experimental results demonstrated that the proposed model provides more accurate retrieval results with less time cost compared with other methods.


Author(s):  
Jun Long ◽  
Qunfeng Liu ◽  
Xinpan Yuan ◽  
Chengyuan Zhang ◽  
Junfeng Liu ◽  
...  

Image similarity measures play an important role in nearest neighbor search and duplicate detection for large-scale image datasets. Recently, Minwise Hashing (or Minhash) and its related hashing algorithms have achieved great performances in large-scale image retrieval systems. However, there are a large number of comparisons for image pairs in these applications, which may spend a lot of computation time and affect the performance. In order to quickly obtain the pairwise images that theirs similarities are higher than the specific thresholdT(e.g., 0.5), we propose a dynamic threshold filter of Minwise Hashing for image similarity measures. It greatly reduces the calculation time by terminating the unnecessary comparisons in advance. We also find that the filter can be extended to other hashing algorithms, on when the estimator satisfies the binomial distribution, such as b-Bit Minwise Hashing, One Permutation Hashing, etc. In this pager, we use the Bag-of-Visual-Words (BoVW) model based on the Scale Invariant Feature Transform (SIFT) to represent the image features. We have proved that the filter is correct and effective through the experiment on real image datasets.


Sign in / Sign up

Export Citation Format

Share Document