scholarly journals Inference of phenotype-relevant transcriptional regulatory networks elucidates cancer type-specific regulatory mechanisms in a pan-cancer study

2018 ◽  
Author(s):  
Amin Emad ◽  
Saurabh Sinha

ABSTRACTReconstruction of transcriptional regulatory networks (TRNs) is a powerful approach to unravel the gene expression programs involved in healthy and disease states of a cell. However, these networks are usually reconstructed independent of the phenotypic properties of the samples and therefore cannot identify regulatory mechanisms that are related to a phenotypic outcome of interest. In this study, we developed a new method called InPheRNo to identify ‘phenotype-relevant’ transcriptional regulatory networks. This method is based on a probabilistic graphical model whose conditional probability distributions model the simultaneous effects of multiple transcription factors (TFs) on their target genes as well as the statistical relationship between target gene expression and phenotype. Extensive comparison of InPheRNo with related approaches using primary tumor samples of 18 cancer types from The Cancer Genome Atlas revealed that InPheRNo can accurately reconstruct cancer type-relevant TRNs and identify cancer driver TFs. In addition, survival analysis revealed that the activity level of TFs with many target genes could distinguish patients with good prognosis from those with poor prognosis.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Amin Emad ◽  
Saurabh Sinha

AbstractReconstruction of transcriptional regulatory networks (TRNs) is a powerful approach to unravel the gene expression programs involved in healthy and disease states of a cell. However, these networks are usually reconstructed independent of the phenotypic (or clinical) properties of the samples. Therefore, they may confound regulatory mechanisms that are specifically related to a phenotypic property with more general mechanisms underlying the full complement of the analyzed samples. In this study, we develop a method called InPheRNo to identify “phenotype-relevant” TRNs. This method is based on a probabilistic graphical model that models the simultaneous effects of multiple transcription factors (TFs) on their target genes and the statistical relationship between the target genes’ expression and the phenotype. Extensive comparison of InPheRNo with related approaches using primary tumor samples of 18 cancer types from The Cancer Genome Atlas reveals that InPheRNo can accurately reconstruct cancer type-relevant TRNs and identify cancer driver TFs. In addition, survival analysis reveals that the activity level of TFs with many target genes could distinguish patients with poor prognosis from those with better prognosis.


2012 ◽  
Vol 10 (05) ◽  
pp. 1250012 ◽  
Author(s):  
SHERINE AWAD ◽  
NICHOLAS PANCHY ◽  
SEE-KIONG NG ◽  
JIN CHEN

Living cells are realized by complex gene expression programs that are moderated by regulatory proteins called transcription factors (TFs). The TFs control the differential expression of target genes in the context of transcriptional regulatory networks (TRNs), either individually or in groups. Deciphering the mechanisms of how the TFs control the differential expression of a target gene in a TRN is challenging, especially when multiple TFs collaboratively participate in the transcriptional regulation. To unravel the roles of the TFs in the regulatory networks, we model the underlying regulatory interactions in terms of the TF–target interactions' directions (activation or repression) and their corresponding logical roles (necessary and/or sufficient). We design a set of constraints that relate gene expression patterns to regulatory interaction models, and develop TRIM (Transcriptional Regulatory Interaction Model Inference), a new hidden Markov model, to infer the models of TF–target interactions in large-scale TRNs of complex organisms. Besides, by training TRIM with wild-type time-series gene expression data, the activation timepoints of each regulatory module can be obtained. To demonstrate the advantages of TRIM, we applied it on yeast TRN to infer the TF–target interaction models for individual TFs as well as pairs of TFs in collaborative regulatory modules. By comparing with TF knockout and other gene expression data, we were able to show that the performance of TRIM is clearly higher than DREM (the best existing algorithm). In addition, on an individual Arabidopsis binding network, we showed that the target genes' expression correlations can be significantly improved by incorporating the TF–target regulatory interaction models inferred by TRIM into the expression data analysis, which may introduce new knowledge in transcriptional dynamics and bioactivation.


Author(s):  
Alberto de la Fuente

This book deals with algorithms for inferring and analyzing Gene Regulatory Networks using mainly gene expression data. What precisely are the Gene Regulatory Networks that are inferred by such algorithms from this type of data? There is still much confusion in the current literature and it is important to start a book about computational methods for Gene Regulatory Networks with a definition that is as unambiguous as possible. In this chapter, I provide a definition and try to clearly explain what Gene Regulatory Networks are in terms of the underlying biochemical processes. To do the latter in a formal way, I will use a linear approximation to the in general non-linear kinetics underlying interactions in biochemical systems and show how a biochemical system can be ‘condensed’ into the more compact description of Gene Regulatory Networks. Important differences between the defined Gene Regulatory Networks and other network models for gene regulation, such as Transcriptional Regulatory Networks and Co-Expression Networks, will be highlighted.


2018 ◽  
Vol 14 (3) ◽  
Author(s):  
Seth A Ament ◽  
Jocelynn R Pearl ◽  
Jeffrey P Cantle ◽  
Robert M Bragg ◽  
Peter J Skene ◽  
...  

2021 ◽  
Author(s):  
Eric Ching-Pan Chu ◽  
Alexander Morin ◽  
Tak Hou Calvin Chang ◽  
Tue Nguyen ◽  
Yi-Cheng Tsai ◽  
...  

To facilitate the development of large-scale transcriptional regulatory networks (TRNs) that may enable in-silico analyses of disease mechanisms, a reliable catalogue of experimentally verified direct transcriptional regulatory interactions (DTRIs) is needed for training and validation. There has been a long history of using low-throughput experiments to validate single DTRIs. Therefore, we hypothesize that a reliable set of DTRIs could be produced by curating the published literature for such evidence. In our survey of previous curation efforts, we identified the lack of details about the quantity and the types of experimental evidence to be a major gap, despite the importance of such details for the identification of bona fide DTRIs. We developed a curation protocol to inspect the published literature for support of DTRIs at the experiment level, focusing on genes important to the development of the mammalian nervous system. We sought to record three types of low-throughput experiments: Transcription factor (TF) perturbation, TF-DNA binding, and TF-reporter assays. Using this protocol, we examined a total of 1,310 papers to assemble a collection of 1,499 unique DTRIs, involving 251 TFs and 825 target genes, many of which were not reported in any other DTRI resource. The majority of DTRIs (965, 64%) were supported by two or more types of experimental evidence and 27% were supported by all three. Of the DTRIs with all three types of evidence, 170 had been tested using primary tissues or cells and 44 had been tested directly in the central nervous system. We used our resource to document research biases among reports towards a small number of well-studied TFs. To demonstrate a use case for this resource, we compared our curation to a previously published high-throughput perturbation screen and found significant enrichment of the curated targets among genes differentially expressed in the developing brain in response to Pax6 deletion. This study demonstrates a proof-of-concept for the assembly of a high confidence DTRI resource in order to support the development of large-scale TRNs.


2010 ◽  
Vol 38 (5) ◽  
pp. 1155-1178 ◽  
Author(s):  
M. Madan Babu

The availability of entire genome sequences and the wealth of literature on gene regulation have enabled researchers to model an organism's transcriptional regulation system in the form of a network. In such a network, TFs (transcription factors) and TGs (target genes) are represented as nodes and regulatory interactions between TFs and TGs are represented as directed links. In the present review, I address the following topics pertaining to transcriptional regulatory networks. (i) Structure and organization: first, I introduce the concept of networks and discuss our understanding of the structure and organization of transcriptional networks. (ii) Evolution: I then describe the different mechanisms and forces that influence network evolution and shape network structure. (iii) Dynamics: I discuss studies that have integrated information on dynamics such as mRNA abundance or half-life, with data on transcriptional network in order to elucidate general principles of regulatory network dynamics. In particular, I discuss how cell-to-cell variability in the expression level of TFs could permit differential utilization of the same underlying network by distinct members of a genetically identical cell population. Finally, I conclude by discussing open questions for future research and highlighting the implications for evolution, development, disease and applications such as genetic engineering.


2009 ◽  
Vol 73 (3) ◽  
pp. 481-509 ◽  
Author(s):  
Sacha A. F. T. van Hijum ◽  
Marnix H. Medema ◽  
Oscar P. Kuipers

SUMMARY A major part of organismal complexity and versatility of prokaryotes resides in their ability to fine-tune gene expression to adequately respond to internal and external stimuli. Evolution has been very innovative in creating intricate mechanisms by which different regulatory signals operate and interact at promoters to drive gene expression. The regulation of target gene expression by transcription factors (TFs) is governed by control logic brought about by the interaction of regulators with TF binding sites (TFBSs) in cis-regulatory regions. A factor that in large part determines the strength of the response of a target to a given TF is motif stringency, the extent to which the TFBS fits the optimal TFBS sequence for a given TF. Advances in high-throughput technologies and computational genomics allow reconstruction of transcriptional regulatory networks in silico. To optimize the prediction of transcriptional regulatory networks, i.e., to separate direct regulation from indirect regulation, a thorough understanding of the control logic underlying the regulation of gene expression is required. This review summarizes the state of the art of the elements that determine the functionality of TFBSs by focusing on the molecular biological mechanisms and evolutionary origins of cis-regulatory regions.


Sign in / Sign up

Export Citation Format

Share Document